These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 21783213)
1. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense. Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213 [TBL] [Abstract][Full Text] [Related]
2. Glucosinolate hydrolysis in Lepidium sativum--identification of the thiocyanate-forming protein. Burow M; Bergner A; Gershenzon J; Wittstock U Plant Mol Biol; 2007 Jan; 63(1):49-61. PubMed ID: 17139450 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity. Zhang W; Wang W; Liu Z; Xie Y; Wang H; Mu Y; Huang Y; Feng Y Biochem Biophys Res Commun; 2016 Sep; 478(2):746-51. PubMed ID: 27498030 [TBL] [Abstract][Full Text] [Related]
4. Structural diversification during glucosinolate breakdown: mechanisms of thiocyanate, epithionitrile and simple nitrile formation. Eisenschmidt-Bönn D; Schneegans N; Backenköhler A; Wittstock U; Brandt W Plant J; 2019 Jul; 99(2):329-343. PubMed ID: 30900313 [TBL] [Abstract][Full Text] [Related]
5. Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown. Backenköhler A; Eisenschmidt D; Schneegans N; Strieker M; Brandt W; Wittstock U PLoS One; 2018; 13(11):e0205755. PubMed ID: 30395611 [TBL] [Abstract][Full Text] [Related]
6. Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions. Kong XY; Kissen R; Bones AM Phytochemistry; 2012 Dec; 84():7-17. PubMed ID: 22954730 [TBL] [Abstract][Full Text] [Related]
7. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown. Gumz F; Krausze J; Eisenschmidt D; Backenköhler A; Barleben L; Brandt W; Wittstock U Plant Mol Biol; 2015 Sep; 89(1-2):67-81. PubMed ID: 26260516 [TBL] [Abstract][Full Text] [Related]
8. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. Kissen R; Bones AM J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919 [TBL] [Abstract][Full Text] [Related]
9. Tipping the scales--specifier proteins in glucosinolate hydrolysis. Wittstock U; Burow M IUBMB Life; 2007 Dec; 59(12):744-51. PubMed ID: 18085474 [TBL] [Abstract][Full Text] [Related]
10. Evolution of specifier proteins in glucosinolate-containing plants. Kuchernig JC; Burow M; Wittstock U BMC Evol Biol; 2012 Jul; 12():127. PubMed ID: 22839361 [TBL] [Abstract][Full Text] [Related]
11. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
12. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. Burow M; Losansky A; Müller R; Plock A; Kliebenstein DJ; Wittstock U Plant Physiol; 2009 Jan; 149(1):561-74. PubMed ID: 18987211 [TBL] [Abstract][Full Text] [Related]
13. Molecular models and mutational analyses of plant specifier proteins suggest active site residues and reaction mechanism. Brandt W; Backenköhler A; Schulze E; Plock A; Herberg T; Roese E; Wittstock U Plant Mol Biol; 2014 Jan; 84(1-2):173-88. PubMed ID: 23999604 [TBL] [Abstract][Full Text] [Related]
14. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Lambrix V; Reichelt M; Mitchell-Olds T; Kliebenstein DJ; Gershenzon J Plant Cell; 2001 Dec; 13(12):2793-807. PubMed ID: 11752388 [TBL] [Abstract][Full Text] [Related]
15. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the active site in the thiocyanate-forming protein from Hashemi Haeri H; Schneegans N; Eisenschmidt-Bönn D; Brandt W; Wittstock U; Hinderberger D Biol Chem; 2024 Feb; 405(2):105-118. PubMed ID: 37586381 [TBL] [Abstract][Full Text] [Related]
17. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
18. In vitro metabolic conversion of the organic breakdown products of glucosinolate to goitrogenic thiocyanate anion. Lee J; Kwon H J Sci Food Agric; 2015 Aug; 95(11):2244-51. PubMed ID: 25271103 [TBL] [Abstract][Full Text] [Related]
19. Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile. Williams DJ; Critchley C; Pun S; Nottingham S; O'Hare TJ Phytochemistry; 2008 Nov; 69(16):2765-73. PubMed ID: 18977005 [TBL] [Abstract][Full Text] [Related]
20. Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Wentzell AM; Kliebenstein DJ Plant Physiol; 2008 May; 147(1):415-28. PubMed ID: 18359845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]