These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 21783372)
1. Thermal performance of batch boiling water targets for 18F production. Peeples JL; Stokely MH; Michael Doster J Appl Radiat Isot; 2011 Oct; 69(10):1349-54. PubMed ID: 21783372 [TBL] [Abstract][Full Text] [Related]
2. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc. Lebeda O; van Lier EJ; Štursa J; Ráliš J; Zyuzin A Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396 [TBL] [Abstract][Full Text] [Related]
3. A water target with beam sweep for routine fluorine-18 production. Helmeke HJ; Harms T; Knapp WH Appl Radiat Isot; 2001 May; 54(5):753-9. PubMed ID: 11258524 [TBL] [Abstract][Full Text] [Related]
4. [Use of a cyclotron in the production of positron emitting radionuclides]. Martí-Climent J; Peñuelas I; Calvo R; Giménez M; Gámez C; Richter J Rev Esp Med Nucl; 1999 Aug; 18(4):261-7. PubMed ID: 10481107 [TBL] [Abstract][Full Text] [Related]
5. Factors affecting the specific activity of [18F]fluoride from a [18O]water target. Füchtner F; Preusche S; Mäding P; Zessin J; Steinbach J Nuklearmedizin; 2008; 47(3):116-9. PubMed ID: 18493691 [TBL] [Abstract][Full Text] [Related]
6. Analysis of metal radioisotope impurities generated in [(18)O]H(2)O during the cyclotron production of fluorine-18. Gillies JM; Najim N; Zweit J Appl Radiat Isot; 2006 Apr; 64(4):431-4. PubMed ID: 16290946 [TBL] [Abstract][Full Text] [Related]
7. Radionuclide impurities in proton-irradiated [18O]H2O for the production of 18F-: activities and distribution in the [18F]FDG synthesis process. Bowden L; Vintró LL; Mitchell PI; O'Donnell RG; Seymour AM; Duffy GJ Appl Radiat Isot; 2009 Feb; 67(2):248-55. PubMed ID: 19111472 [TBL] [Abstract][Full Text] [Related]
8. Purification by ozonolysis of (18)O enriched water after cyclotron irradiation and the utilization of the purified water for the production of [18F]-FDG (2-deoxy-2-[18F]-fluoro-d-glucose). Asti M; Grassi E; Sghedoni R; De Pietri G; Fioroni F; Versari A; Borasi G; Salvo D Appl Radiat Isot; 2007 Jul; 65(7):831-5. PubMed ID: 17459713 [TBL] [Abstract][Full Text] [Related]
9. Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F] OF2. Bishop A; Satyamurthy N; Bida G; Hendry G; Phelps M; Barrio JR Nucl Med Biol; 1996 Apr; 23(3):189-99. PubMed ID: 8782226 [TBL] [Abstract][Full Text] [Related]
10. A grid-mounted niobium body target for the production of reactive [18F]fluoride. Nye JA; Avila-Rodriguez MA; Nickles RJ Appl Radiat Isot; 2006 May; 64(5):536-9. PubMed ID: 16368243 [TBL] [Abstract][Full Text] [Related]
11. Cryogenic target design considerations for the production of [18F]fluoride from enriched [18O]carbon dioxide. Firouzbakht ML; Schlyer DJ; Fowler JS Nucl Med Biol; 1999 Oct; 26(7):749-53. PubMed ID: 10628554 [TBL] [Abstract][Full Text] [Related]
12. Simulation, design, and testing of a high power collimator for the RDS-112 cyclotron. Peeples JL; Stokely MH; Poorman MC; Bida GT; Wieland BW Appl Radiat Isot; 2015 Mar; 97():87-92. PubMed ID: 25562677 [TBL] [Abstract][Full Text] [Related]
13. Temperature course in small volume [18O]water targets for [18F]F- production. Steinbach J; Guenther K; Loesel E; Grunwald G; Mikecz P; Andó L; Szelecsényi F; Beyer GJ Int J Rad Appl Instrum A; 1990; 41(8):753-6. PubMed ID: 2172187 [TBL] [Abstract][Full Text] [Related]
14. Metals suitable for fluorine gas target bodies: first use of aluminum for the production of [18F]F2. Bishop A; Satyamurthy N; Bida G; Phelps M; Barrio JR Nucl Med Biol; 1996 Apr; 23(3):181-8. PubMed ID: 8782225 [TBL] [Abstract][Full Text] [Related]
15. Development of an improved target for [18F]F2 production. Roberts AD; Oakes TR; Nickles RJ Appl Radiat Isot; 1995 Feb; 46(2):87-91. PubMed ID: 7711684 [TBL] [Abstract][Full Text] [Related]
16. Distribution of thermal neutron flux around a PET cyclotron. Ogata Y; Ishigure N; Mochizuki S; Ito K; Hatano K; Abe J; Miyahara H; Masumoto K; Nakamura H Health Phys; 2011 May; 100 Suppl 2():S60-6. PubMed ID: 21451309 [TBL] [Abstract][Full Text] [Related]
17. Implementation of Multi-Curie Production of (99m)Tc by Conventional Medical Cyclotrons. Bénard F; Buckley KR; Ruth TJ; Zeisler SK; Klug J; Hanemaayer V; Vuckovic M; Hou X; Celler A; Appiah JP; Valliant J; Kovacs MS; Schaffer P J Nucl Med; 2014 Jun; 55(6):1017-22. PubMed ID: 24722529 [TBL] [Abstract][Full Text] [Related]
18. Practical experience and challenges in the operation of medical cyclotron. Kumar R; Sonkawade RG; Pandey AK; Tripathi M; Damle NA; Kumar P; Bal CS Nucl Med Commun; 2017 Jan; 38(1):10-14. PubMed ID: 27755293 [TBL] [Abstract][Full Text] [Related]
19. Production of nitrogen-13-labeled ammonia by using 11MeV medical cyclotron: our experience. Kumar R; Singh H; Jacob M; Anand SP; Bandopadhyaya GP Hell J Nucl Med; 2009; 12(3):248-50. PubMed ID: 19936337 [TBL] [Abstract][Full Text] [Related]
20. MONTE CARLO SIMULATION OF THE RADIATION SOURCE TERM FROM [18O]H2O CYCLOTRON TARGET BOMBARDMENT WITH PROTONS OF 16.5 MEV. Benavente-Castillo JA; da Silva TA; Fonseca TCF; Lacerda MAS Radiat Prot Dosimetry; 2023 Apr; 199(6):552-563. PubMed ID: 36916121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]