These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 21783404)

  • 81. Structure and genome ejection mechanism of
    Hrebík D; Štveráková D; Škubník K; Füzik T; Pantůček R; Plevka P
    Sci Adv; 2019 Oct; 5(10):eaaw7414. PubMed ID: 31663016
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The Enemy of My Enemy: New Insights Regarding Bacteriophage-Mammalian Cell Interactions.
    Bodner K; Melkonian AL; Covert MW
    Trends Microbiol; 2021 Jun; 29(6):528-541. PubMed ID: 33243546
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Backseat drivers: the hidden influence of microbial viruses on disease.
    Hartley MA; Ronet C; Fasel N
    Curr Opin Microbiol; 2012 Aug; 15(4):538-45. PubMed ID: 22694933
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection.
    Vinga I; Baptista C; Auzat I; Petipas I; Lurz R; Tavares P; Santos MA; São-José C
    Mol Microbiol; 2012 Jan; 83(2):289-303. PubMed ID: 22171743
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Targeting mechanisms of tailed bacteriophages.
    Nobrega FL; Vlot M; de Jonge PA; Dreesens LL; Beaumont HJE; Lavigne R; Dutilh BE; Brouns SJJ
    Nat Rev Microbiol; 2018 Dec; 16(12):760-773. PubMed ID: 30104690
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection.
    Arnaud CA; Effantin G; Vivès C; Engilberge S; Bacia M; Boulanger P; Girard E; Schoehn G; Breyton C
    Nat Commun; 2017 Dec; 8(1):1953. PubMed ID: 29209037
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA.
    São-José C; Lhuillier S; Lurz R; Melki R; Lepault J; Santos MA; Tavares P
    J Biol Chem; 2006 Apr; 281(17):11464-70. PubMed ID: 16481324
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Halophage HF2: genome organization and replication strategy.
    Nuttall SD; Dyall-Smith ML
    J Virol; 1995 Apr; 69(4):2322-7. PubMed ID: 7884878
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Jumbo bacteriophages.
    Hendrix RW
    Curr Top Microbiol Immunol; 2009; 328():229-40. PubMed ID: 19216440
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Analyzing Phage-Host Protein-Protein Interactions Using Strep-tag
    De Smet J; Hendrix H; Van den Bossche A
    Methods Mol Biol; 2019; 1898():117-136. PubMed ID: 30570728
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mechanisms of multi-strain coexistence in host-phage systems with nested infection networks.
    Jover LF; Cortez MH; Weitz JS
    J Theor Biol; 2013 Sep; 332():65-77. PubMed ID: 23608631
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Host translation machinery is not a barrier to phages that interact with both CPR and non-CPR bacteria.
    Liu J; Jaffe AL; Chen L; Bor B; Banfield JF
    mBio; 2023 Dec; 14(6):e0176623. PubMed ID: 38009957
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Dynamics of bacteriophage genome ejection in vitro and in vivo.
    Panja D; Molineux IJ
    Phys Biol; 2010 Dec; 7(4):045006. PubMed ID: 21149974
    [TBL] [Abstract][Full Text] [Related]  

  • 94. [Evolutionary trends in the prokaryotic community and prokaryotic community-phage systems].
    Lashin SA; Matushkin IuG; Suslov VV; Kolchanov NA
    Genetika; 2011 Dec; 47(12):1676-85. PubMed ID: 22384696
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Osmotic pressure: resisting or promoting DNA ejection from phage?
    Jeembaeva M; Castelnovo M; Larsson F; Evilevitch A
    J Mol Biol; 2008 Aug; 381(2):310-23. PubMed ID: 18602115
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell.
    Rakhuba DV; Kolomiets EI; Dey ES; Novik GI
    Pol J Microbiol; 2010; 59(3):145-55. PubMed ID: 21033576
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY.
    Prichard A; Lee J; Laughlin TG; Lee A; Thomas KP; Sy AE; Spencer T; Asavavimol A; Cafferata A; Cameron M; Chiu N; Davydov D; Desai I; Diaz G; Guereca M; Hearst K; Huang L; Jacobs E; Johnson A; Kahn S; Koch R; Martinez A; Norquist M; Pau T; Prasad G; Saam K; Sandhu M; Sarabia AJ; Schumaker S; Sonin A; Uyeno A; Zhao A; Corbett KD; Pogliano K; Meyer J; Grose JH; Villa E; Dutton R; Pogliano J
    Cell Rep; 2023 May; 42(5):112432. PubMed ID: 37120812
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Bacteriophage-bacteriophage interactions in the evolution of pathogenic bacteria.
    Boyd EF; Davis BM; Hochhut B
    Trends Microbiol; 2001 Mar; 9(3):137-44. PubMed ID: 11303502
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Enzymes and Mechanisms Employed by Tailed Bacteriophages to Breach the Bacterial Cell Barriers.
    Fernandes S; São-José C
    Viruses; 2018 Jul; 10(8):. PubMed ID: 30060520
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Evolutionary Ecology of Prokaryotic Immune Mechanisms.
    van Houte S; Buckling A; Westra ER
    Microbiol Mol Biol Rev; 2016 Sep; 80(3):745-63. PubMed ID: 27412881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.