These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21783496)

  • 1. Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents.
    El-Sheekh MM; El-Shouny WA; Osman ME; El-Gammal EW
    Environ Toxicol Pharmacol; 2005 Feb; 19(2):357-65. PubMed ID: 21783496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents.
    Ajayan KV; Selvaraju M; Thirugnanamoorthy K
    Pak J Biol Sci; 2011 Aug; 14(16):805-11. PubMed ID: 22545355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremoval of heavy metals and nutrients from sewage plant by Anabaena oryzae and Cyanosarcina fontana.
    Fawzy MA; Issa AA
    Int J Phytoremediation; 2016; 18(4):321-8. PubMed ID: 26457837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative studies on growth and Pb(II) removal from aqueous solution by Nostoc muscorum and Anabaena variabilis.
    Abd El-Hameed MM; Abuarab ME; Abdel Mottaleb S; El-Bahbohy RM; Bakeer GA
    Ecotoxicol Environ Saf; 2018 Dec; 165():637-644. PubMed ID: 30241092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bio-sludge concentration on the efficiency of sequencing batch reactor (SBR) system to treat wastewater containing Pb2+ and Ni2+.
    Sirianuntapiboon S; Boonchupleing M
    J Hazard Mater; 2009 Jul; 166(1):356-64. PubMed ID: 19097695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass.
    Gupta VK; Rastogi A
    J Hazard Mater; 2008 Jun; 154(1-3):347-54. PubMed ID: 18053641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY; Chen WH; Shih CJ
    Water Sci Technol; 2008; 58(10):1947-54. PubMed ID: 19039174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge.
    Fuerhacker M; Haile TM; Kogelnig D; Stojanovic A; Keppler B
    Water Sci Technol; 2012; 65(10):1765-73. PubMed ID: 22546790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity assessment of heavy metals with Nostoc muscorum L.
    Chaudhary MP; Chandra R
    J Environ Biol; 2005 Jan; 26(1):129-34. PubMed ID: 16114473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal concentrations in the sewage, effluents, and sludges of some southern Ontario wastewater treatment plants.
    Oliver BG; Cosgrove EG
    Environ Lett; 1975; 9(1):75-90. PubMed ID: 1183416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants.
    Wang C; Hu X; Chen ML; Wu YH
    J Hazard Mater; 2005 Mar; 119(1-3):245-9. PubMed ID: 15752872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plants grown on sewage sludge in South China and its relevance to sludge stabilization and metal removal.
    Samake M; Wu QT; Mo CH; Morel JL
    J Environ Sci (China); 2003 Sep; 15(5):622-7. PubMed ID: 14562922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater.
    Singh SK; Bansal A; Jha MK; Dey A
    Bioresour Technol; 2012 Jan; 104():257-65. PubMed ID: 22154744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal availability and uptake by sorghum plants grown in soils amended with sludge from different treatments.
    Mendoza J; Garrido T; Castillo G; San Martin N
    Chemosphere; 2006 Dec; 65(11):2304-12. PubMed ID: 16797672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The accumulation and degradation dynamics of cyanophycin in cyanobacteria grown in symbiotic associations with plant tissues and cells].
    Gorelova OA; Kleĭmenov SIu
    Mikrobiologiia; 2003; 72(3):361-9. PubMed ID: 12901011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a bio-electrochemical reactor process to direct treatment of metal pickling wastewater containing heavy metals and high strength nitrate.
    Watanabe T; Jin HW; Cho KJ; Kuroda M
    Water Sci Technol; 2004; 50(8):111-8. PubMed ID: 15566194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria.
    De Philippis R; Paperi R; Sili C
    Biodegradation; 2007 Apr; 18(2):181-7. PubMed ID: 16758273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of the cyanobacterium Nostoc muscorum from Portuguese rice fields to Molinate (Ordram(®)): Effects on the antioxidant system and fatty acid profile.
    Galhano V; Gomes-Laranjo J; Peixoto F
    Aquat Toxicol; 2011 Jan; 101(2):367-76. PubMed ID: 21216347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.