These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 21784082)
21. Prey selection, vertical migrations and the impacts of harvesting upon the population dynamics of a predator-prey system. Edwards HJ; Dytham C; Pitchford JW; Righton D Bull Math Biol; 2007 Aug; 69(6):1827-46. PubMed ID: 17443393 [TBL] [Abstract][Full Text] [Related]
22. Stability of ecosystem: global properties of a general predator-prey model. Korobeinikov A Math Med Biol; 2009 Dec; 26(4):309-21. PubMed ID: 19380507 [TBL] [Abstract][Full Text] [Related]
23. Stability and Hopf bifurcation of an intraguild prey-predator fishery model with two delays and Michaelis-Menten type predator harvest. Hou M; Zhang T; Yuan S Math Biosci Eng; 2024 Apr; 21(4):5687-5711. PubMed ID: 38872554 [TBL] [Abstract][Full Text] [Related]
24. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Banerjee M; Banerjee S Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074 [TBL] [Abstract][Full Text] [Related]
25. Epidemics in predator-prey models: disease in the predators. Venturino E IMA J Math Appl Med Biol; 2002 Sep; 19(3):185-205. PubMed ID: 12650334 [TBL] [Abstract][Full Text] [Related]
26. A comparison of two predator-prey models with Holling's type I functional response. Seo G; Kot M Math Biosci; 2008 Apr; 212(2):161-79. PubMed ID: 18346761 [TBL] [Abstract][Full Text] [Related]
27. Supercritical and subcritical Hopf-bifurcations in a two-delayed prey-predator system with density-dependent mortality of predator and strong Allee effect in prey. Banerjee J; Sasmal SK; Layek RK Biosystems; 2019 Jun; 180():19-37. PubMed ID: 30851345 [TBL] [Abstract][Full Text] [Related]
28. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems. Vucetich JA; Hebblewhite M; Smith DW; Peterson RO J Anim Ecol; 2011 Nov; 80(6):1236-45. PubMed ID: 21569029 [TBL] [Abstract][Full Text] [Related]
29. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system. Rodrigues LA; Mistro DC; Petrovskii S Bull Math Biol; 2011 Aug; 73(8):1812-40. PubMed ID: 20972714 [TBL] [Abstract][Full Text] [Related]
30. Effect of disease-selective predation on prey infected by contact and external sources. Das KP; Roy S; Chattopadhyay J Biosystems; 2009 Mar; 95(3):188-99. PubMed ID: 19010384 [TBL] [Abstract][Full Text] [Related]
31. Complex dynamics of a predator-prey model with opportunistic predator and weak Allee effect in prey. Zhu Z; Chen Y; Chen F; Li Z J Biol Dyn; 2023 Dec; 17(1):2225545. PubMed ID: 37339327 [TBL] [Abstract][Full Text] [Related]
32. [Analysis of seasonal fluctuations in the Lotka-Volterra model]. Lobanov AI; Sarancha DA; Starozhilova TK Biofizika; 2002; 47(2):325-30. PubMed ID: 11969172 [TBL] [Abstract][Full Text] [Related]
33. Dispersal delays, predator-prey stability, and the paradox of enrichment. Klepac P; Neubert MG; van den Driessche P Theor Popul Biol; 2007 Jun; 71(4):436-44. PubMed ID: 17433392 [TBL] [Abstract][Full Text] [Related]
34. Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. Morozov A; Petrovskii S; Li BL J Theor Biol; 2006 Jan; 238(1):18-35. PubMed ID: 16005019 [TBL] [Abstract][Full Text] [Related]
35. Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system. Mukhopadhyay B; Bhattacharyya R Bull Math Biol; 2006 Feb; 68(2):293-313. PubMed ID: 16794932 [TBL] [Abstract][Full Text] [Related]
36. Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters. Zhang X; Zhao H J Theor Biol; 2014 Dec; 363():390-403. PubMed ID: 25172773 [TBL] [Abstract][Full Text] [Related]
37. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Chang X; Wei J Math Biosci Eng; 2013 Aug; 10(4):979-96. PubMed ID: 23906199 [TBL] [Abstract][Full Text] [Related]
38. Chaos control via feeding switching in an omnivory system. Chattopadhyay J; Pal N; Samanta S; Venturino E; Khan QJ Biosystems; 2015 Dec; 138():18-24. PubMed ID: 26521665 [TBL] [Abstract][Full Text] [Related]
39. The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem. Milgram A J Theor Biol; 2011 Feb; 271(1):157-8. PubMed ID: 21145326 [TBL] [Abstract][Full Text] [Related]
40. Dynamical analysis of a delayed diffusive predator-prey model with schooling behaviour and Allee effect. Meng XY; Wang JG J Biol Dyn; 2020 Dec; 14(1):826-848. PubMed ID: 33225865 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]