These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 21784106)

  • 1. Age differences in spatial working memory contributions to visuomotor adaptation and transfer.
    Langan J; Seidler RD
    Behav Brain Res; 2011 Nov; 225(1):160-8. PubMed ID: 21784106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure to engage spatial working memory contributes to age-related declines in visuomotor learning.
    Anguera JA; Reuter-Lorenz PA; Willingham DT; Seidler RD
    J Cogn Neurosci; 2011 Jan; 23(1):11-25. PubMed ID: 20146609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of spatial working memory to visuomotor learning.
    Anguera JA; Reuter-Lorenz PA; Willingham DT; Seidler RD
    J Cogn Neurosci; 2010 Sep; 22(9):1917-30. PubMed ID: 19803691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain functional differences in visuo-motor task adaptation between dominant and non-dominant hand training.
    Kirby KM; Pillai SR; Carmichael OT; Van Gemmert AWA
    Exp Brain Res; 2019 Dec; 237(12):3109-3121. PubMed ID: 31542802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced spatial knowledge of target location eliminates age-related differences in early sensorimotor learning.
    Rajeshkumar L; Trewartha KM
    Exp Brain Res; 2019 Jul; 237(7):1781-1791. PubMed ID: 31049628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related differences in brain activity during verbal recency memory.
    Rajah MN; McIntosh AR
    Brain Res; 2008 Mar; 1199():111-25. PubMed ID: 18282558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating neurocognitive aging: effects of a dopaminergic antagonist on brain activity during working memory.
    Fischer H; Nyberg L; Karlsson S; Karlsson P; Brehmer Y; Rieckmann A; MacDonald SW; Farde L; Bäckman L
    Biol Psychiatry; 2010 Mar; 67(6):575-80. PubMed ID: 20138255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuropsychological predictors of BOLD response during a spatial working memory task in adolescents: what can performance tell us about fMRI response patterns?
    Nagel BJ; Barlett VC; Schweinsburg AD; Tapert SF
    J Clin Exp Neuropsychol; 2005 Oct; 27(7):823-39. PubMed ID: 16183616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning.
    Bo J; Borza V; Seidler RD
    J Neurophysiol; 2009 Nov; 102(5):2744-54. PubMed ID: 19726728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BOLD response during spatial working memory in youth with heavy prenatal alcohol exposure.
    Spadoni AD; Bazinet AD; Fryer SL; Tapert SF; Mattson SN; Riley EP
    Alcohol Clin Exp Res; 2009 Dec; 33(12):2067-76. PubMed ID: 19740135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Span, CRUNCH, and beyond: working memory capacity and the aging brain.
    Schneider-Garces NJ; Gordon BA; Brumback-Peltz CR; Shin E; Lee Y; Sutton BP; Maclin EL; Gratton G; Fabiani M
    J Cogn Neurosci; 2010 Apr; 22(4):655-69. PubMed ID: 19320550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention.
    Kundu B; Sutterer DW; Emrich SM; Postle BR
    J Neurosci; 2013 May; 33(20):8705-15. PubMed ID: 23678114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurocognitive contributions to motor skill learning: the role of working memory.
    Seidler RD; Bo J; Anguera JA
    J Mot Behav; 2012; 44(6):445-53. PubMed ID: 23237467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroanatomical and cognitive mediators of age-related differences in perceptual priming and learning.
    Kennedy KM; Rodrigue KM; Head D; Gunning-Dixon F; Raz N
    Neuropsychology; 2009 Jul; 23(4):475-91. PubMed ID: 19586211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependent modulation of motor network connectivity for skill acquisition, consolidation and interlimb transfer after motor practice.
    Veldman MP; Maurits NM; Mantini D; Hortobágyi T
    Clin Neurophysiol; 2021 Aug; 132(8):1790-1801. PubMed ID: 34130247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.
    Trewartha KM; Garcia A; Wolpert DM; Flanagan JR
    J Neurosci; 2014 Oct; 34(40):13411-21. PubMed ID: 25274819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes in brain deactivation but not in activation after motor learning.
    Berghuis KMM; Fagioli S; Maurits NM; Zijdewind I; Marsman JBC; Hortobágyi T; Koch G; Bozzali M
    Neuroimage; 2019 Feb; 186():358-368. PubMed ID: 30439511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translating working memory into action: behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences.
    Langner R; Sternkopf MA; Kellermann TS; Grefkes C; Kurth F; Schneider F; Zilles K; Eickhoff SB
    Hum Brain Mapp; 2014 Jul; 35(7):3465-84. PubMed ID: 24222405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning.
    Steele CJ; Penhune VB
    J Neurosci; 2010 Jun; 30(24):8332-41. PubMed ID: 20554884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.