BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21784157)

  • 1. Persistence of excitatory shaft synapses adjacent to newly emerged dendritic protrusions.
    Reilly JE; Hanson HH; Phillips GR
    Mol Cell Neurosci; 2011 Oct; 48(2):129-36. PubMed ID: 21784157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1.
    Sorra KE; Harris KM
    J Neurosci; 1993 Sep; 13(9):3736-48. PubMed ID: 8366344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of MSB synapses in dissociated hippocampal culture with simultaneous pre- and postsynaptic live microscopy.
    Reilly JE; Hanson HH; Fernández-Monreal M; Wearne SL; Hof PR; Phillips GR
    PLoS One; 2011; 6(10):e26478. PubMed ID: 22028887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kalirin-7 is an essential component of both shaft and spine excitatory synapses in hippocampal interneurons.
    Ma XM; Wang Y; Ferraro F; Mains RE; Eipper BA
    J Neurosci; 2008 Jan; 28(3):711-24. PubMed ID: 18199770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABAergic synapses are formed without the involvement of dendritic protrusions.
    Wierenga CJ; Becker N; Bonhoeffer T
    Nat Neurosci; 2008 Sep; 11(9):1044-52. PubMed ID: 19160502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines.
    Freund TF; Powell JF; Smith AD
    Neuroscience; 1984 Dec; 13(4):1189-215. PubMed ID: 6152036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmentally regulated changes in cellular compartmentation and synaptic distribution of actin in hippocampal neurons.
    Zhang W; Benson DL
    J Neurosci Res; 2002 Aug; 69(4):427-36. PubMed ID: 12210837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation.
    Aoto J; Ting P; Maghsoodi B; Xu N; Henkemeyer M; Chen L
    J Neurosci; 2007 Jul; 27(28):7508-19. PubMed ID: 17626212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of hippocampal dendritic spines in culture and in brain.
    Boyer C; Schikorski T; Stevens CF
    J Neurosci; 1998 Jul; 18(14):5294-300. PubMed ID: 9651212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendro-dendritic bundling and shared synapses between gonadotropin-releasing hormone neurons.
    Campbell RE; Gaidamaka G; Han SK; Herbison AE
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10835-40. PubMed ID: 19541658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation.
    Harris KM; Jensen FE; Tsao B
    J Neurosci; 1992 Jul; 12(7):2685-705. PubMed ID: 1613552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient dendritic appendages on differentiating septohippocampal neurons are not the sites of synaptogenesis.
    Linke R; Soriano E; Frotscher M
    Brain Res Dev Brain Res; 1994 Nov; 83(1):67-78. PubMed ID: 7697872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons.
    Papa M; Bundman MC; Greenberger V; Segal M
    J Neurosci; 1995 Jan; 15(1 Pt 1):1-11. PubMed ID: 7823120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation.
    Dobie FA; Craig AM
    J Neurosci; 2011 Jul; 31(29):10481-93. PubMed ID: 21775594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1.
    Fiala JC; Feinberg M; Popov V; Harris KM
    J Neurosci; 1998 Nov; 18(21):8900-11. PubMed ID: 9786995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new tool for the quantitative analysis of dendritic filopodial motility.
    Tárnok K; Gulyás M; Bencsik N; Ferenc K; Pfizenmaier K; Hausser A; Schlett K
    Cytometry A; 2015 Jan; 87(1):89-96. PubMed ID: 25257846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells.
    Megías M; Emri Z; Freund TF; Gulyás AI
    Neuroscience; 2001; 102(3):527-40. PubMed ID: 11226691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral organization of endocytic machinery in dendritic spines.
    Rácz B; Blanpied TA; Ehlers MD; Weinberg RJ
    Nat Neurosci; 2004 Sep; 7(9):917-8. PubMed ID: 15322548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The actin-binding domain of spinophilin is necessary and sufficient for targeting to dendritic spines.
    Grossman SD; Hsieh-Wilson LC; Allen PB; Nairn AC; Greengard P
    Neuromolecular Med; 2002; 2(1):61-9. PubMed ID: 12230305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic organization of the external cuneate nucleus in the rat.
    Rosenstein JM; Leure-duPree AE
    J Comp Neurol; 1977 Sep; 175(2):159-79. PubMed ID: 893738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.