These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21784565)

  • 1. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica.
    Zulfiqar A; Paulose B; Chhikara S; Dhankher OP
    Environ Pollut; 2011 Oct; 159(10):3123-8. PubMed ID: 21784565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification.
    Paulose B; Kandasamy S; Dhankher OP
    BMC Plant Biol; 2010 Jun; 10():108. PubMed ID: 20546591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response.
    Quaggiotti S; Barcaccia G; Schiavon M; Nicolé S; Galla G; Rossignolo V; Soattin M; Malagoli M
    Gene; 2007 Nov; 402(1-2):68-80. PubMed ID: 17765407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the physiological and molecular mechanism of persistent organic pollutant uptake and detoxification in cucurbit species (zucchini and squash).
    Chhikara S; Paulose B; White JC; Dhankher OP
    Environ Sci Technol; 2010 Oct; 44(19):7295-301. PubMed ID: 20507062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb.
    Gonçalves AC; Schwantes D; Braga de Sousa RF; Benetoli da Silva TR; Guimarães VF; Campagnolo MA; Soares de Vasconcelos E; Zimmermann J
    J Environ Manage; 2020 May; 262():110342. PubMed ID: 32250818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag.
    Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y
    J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil.
    Liu J; Duan C; Zhang X; Zhu Y; Lu X
    J Hazard Mater; 2011 Apr; 188(1-3):85-91. PubMed ID: 21320751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attenuation of chromium toxicity by bioremediation technology.
    Mohanty M; Patra HK
    Rev Environ Contam Toxicol; 2011; 210():1-34. PubMed ID: 21170701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur, chromium, and selenium accumulated in Chinese cabbage under direct covers.
    Moreno DA; Víllora G; Soriano MT; Castilla N; Romero L
    J Environ Manage; 2005 Jan; 74(1):89-96. PubMed ID: 15572085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of Mauritius Hemp (Furcraea gigantea Vent.) for the Remediation of Chromium Contaminated Soils.
    Ramana S; Biswas AK; Singh AB; Ahirwar NK; Prasad RD; Srivastava S
    Int J Phytoremediation; 2015; 17(7):709-15. PubMed ID: 25976885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet.
    Mietkiewska E; Brost JM; Giblin EM; Barton DL; Taylor DC
    Plant Biotechnol J; 2007 Sep; 5(5):636-45. PubMed ID: 17565584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome profiling of genes differentially modulated by sulfur and chromium identifies potential targets for phytoremediation and reveals a complex S-Cr interplay on sulfate transport regulation in B. juncea.
    Schiavon M; Galla G; Wirtz M; Pilon-Smits EA; Telatin V; Quaggiotti S; Hell R; Barcaccia G; Malagoli M
    J Hazard Mater; 2012 Nov; 239-240():192-205. PubMed ID: 22995205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation: an overview of metallic ion decontamination from soil.
    Singh OV; Labana S; Pandey G; Budhiraja R; Jain RK
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):405-12. PubMed ID: 12764555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation and its models for organic contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2003 May; 15(3):302-10. PubMed ID: 12938977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
    Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ
    Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of weed species applied to remediation of soils contaminated with heavy metals.
    Wei SH; Zhou QX; Wang X; Cao W; Ren LP; Song YF
    J Environ Sci (China); 2004; 16(5):868-73. PubMed ID: 15559831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromiomics: Chromium detoxification and approaches for engineering tolerance in plants.
    Jobby R; Sarkar M; Bose R; Srivastava S; Suprasanna P
    Environ Pollut; 2024 Jun; 350():123991. PubMed ID: 38631449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation: novel approaches to cleaning up polluted soils.
    Krämer U
    Curr Opin Biotechnol; 2005 Apr; 16(2):133-41. PubMed ID: 15831377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of induced mutations in CaFAD2 genes by next-generation sequencing leading to the production of improved oil composition in Crambe abyssinica.
    Cheng J; Salentijn EM; Huang B; Denneboom C; Qi W; Dechesne AC; Krens FA; Visser RG; van Loo EN
    Plant Biotechnol J; 2015 May; 13(4):471-81. PubMed ID: 25393152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.