BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21784632)

  • 1. New inhibitors of colony spreading in Bacillus subtilis and Bacillus anthracis.
    Hao X; Nguyen T; Kearns DB; Arpin CC; Fall R; Sammakia T
    Bioorg Med Chem Lett; 2011 Sep; 21(18):5583-8. PubMed ID: 21784632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screen for agents that induce autolysis in Bacillus subtilis.
    Lacriola CJ; Falk SP; Weisblum B
    Antimicrob Agents Chemother; 2013 Jan; 57(1):229-34. PubMed ID: 23089762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis.
    Gustafsson TN; Osman H; Werngren J; Hoffner S; Engman L; Holmgren A
    Biochim Biophys Acta; 2016 Jun; 1860(6):1265-71. PubMed ID: 26971857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Bacillus anthracis and potential surrogate bacilli growth from spore inocula by nisin and other antimicrobial peptides.
    Montville TJ; De Siano T; Nock A; Padhi S; Wade D
    J Food Prot; 2006 Oct; 69(10):2529-33. PubMed ID: 17066940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate reductase: toward the identification of new potent drug leads.
    Joska TM; Anderson AC
    Antimicrob Agents Chemother; 2006 Oct; 50(10):3435-43. PubMed ID: 17005826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of 2-pyridones as novel inhibitors of the Bacillus anthracis enoyl-ACP reductase.
    Tipparaju SK; Joyasawal S; Forrester S; Mulhearn DC; Pegan S; Johnson ME; Mesecar AD; Kozikowski AP
    Bioorg Med Chem Lett; 2008 Jun; 18(12):3565-9. PubMed ID: 18499454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Methodic approaches to testing Bacillus anthracis susceptibility to antibacterials].
    Buravtseva NP; Aksenova LIu; Riazanova AG
    Antibiot Khimioter; 2009; 54(3-4):6-10. PubMed ID: 19711841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtilis.
    Kinsinger RF; Kearns DB; Hale M; Fall R
    J Bacteriol; 2005 Dec; 187(24):8462-9. PubMed ID: 16321950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation.
    Galeano B; Korff E; Nicholson WL
    Appl Environ Microbiol; 2003 Jul; 69(7):4329-31. PubMed ID: 12839825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligochlorophens are potent inhibitors of Bacillus anthracis.
    Foss MH; Weibel DB
    Antimicrob Agents Chemother; 2010 Sep; 54(9):3988-90. PubMed ID: 20566769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic and crystallographic studies of a new inhibitor series targeting Bacillus anthracis dihydrofolate reductase.
    Beierlein JM; Frey KM; Bolstad DB; Pelphrey PM; Joska TM; Smith AE; Priestley ND; Wright DL; Anderson AC
    J Med Chem; 2008 Dec; 51(23):7532-40. PubMed ID: 19007108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determining the sensitivity of anthrax bacteria to antibiotics for its differentiation from the antibiotic sensitivity of spore-forming saprophytes].
    Proskurina VA; Buravtseva NP; Iaroshchuk VA; Neliapin NM; Eremenko EI
    Antibiot Khimioter; 1992 Feb; 37(2):23-5. PubMed ID: 1514849
    [No Abstract]   [Full Text] [Related]  

  • 13. Coumarin-based inhibitors of Bacillus anthracis and Staphylococcus aureus replicative DNA helicase: chemical optimization, biological evaluation, and antibacterial activities.
    Li B; Pai R; Di M; Aiello D; Barnes MH; Butler MM; Tashjian TF; Peet NP; Bowlin TL; Moir DT
    J Med Chem; 2012 Dec; 55(24):10896-908. PubMed ID: 23231076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diamond nanoparticles suppress lateral growth of bacterial colonies.
    Lišková P; Beranová J; Ukraintsev E; Fišer R; Kofroňová O; Benada O; Konopásek I; Kromka A
    Colloids Surf B Biointerfaces; 2018 Oct; 170():544-552. PubMed ID: 29975902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic and functional characterization of Bacillus anthracis biofilms.
    Lee K; Costerton JW; Ravel J; Auerbach RK; Wagner DM; Keim P; Leid JG
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1693-1701. PubMed ID: 17526827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteriocidal activity of garlic powder against Bacillus anthracis.
    Sasaki J; Kita J
    J Nutr Sci Vitaminol (Tokyo); 2003 Aug; 49(4):297-9. PubMed ID: 14598920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and antimicrobial activity of some novel dicationic sulphonophanes.
    Rajakumar P; Satheeshkumar C; Mohanraj G; Mathivanan N
    Eur J Med Chem; 2011 Jul; 46(7):3093-8. PubMed ID: 21514980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common garlic (Allium sativum L.) has potent Anti-Bacillus anthracis activity.
    Kaur R; Tiwari A; Manish M; Maurya IK; Bhatnagar R; Singh S
    J Ethnopharmacol; 2021 Jan; 264():113230. PubMed ID: 32853741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro efficacy of new antifolates against trimethoprim-resistant Bacillus anthracis.
    Barrow EW; Dreier J; Reinelt S; Bourne PC; Barrow WW
    Antimicrob Agents Chemother; 2007 Dec; 51(12):4447-52. PubMed ID: 17875993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Specific and Nonspecific Inhibitors of Bacillus anthracis Type III Pantothenate Kinase (PanK).
    Shapiro JA; Varga JJ; Parsonage D; Walton W; Redinbo MR; Ross LJ; White EL; Bostwick R; Wuest WM; Claiborne A; Goldberg JB
    ChemMedChem; 2019 Jan; 14(1):78-82. PubMed ID: 30376607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.