These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. Wang C; Zhou Z; Cai H; Chen Z; Xu H J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352 [TBL] [Abstract][Full Text] [Related]
4. Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB. Yamauchi Y; Hirasawa T; Nishii M; Furusawa C; Shimizu H J Gen Appl Microbiol; 2014; 60(3):112-8. PubMed ID: 25008167 [TBL] [Abstract][Full Text] [Related]
5. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate. Buchholz J; Schwentner A; Brunnenkan B; Gabris C; Grimm S; Gerstmeir R; Takors R; Eikmanns BJ; Blombach B Appl Environ Microbiol; 2013 Sep; 79(18):5566-75. PubMed ID: 23835179 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Komati Reddy G; Lindner SN; Wendisch VF Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602 [TBL] [Abstract][Full Text] [Related]
7. Disruption of the Oxidative Pentose Phosphate Pathway Stimulates High-Yield Production Using Resting Corynebacterium glutamicum in the Absence of External Electron Acceptors. Shen J; Chen J; Solem C; Jensen PR; Liu JM Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036990 [TBL] [Abstract][Full Text] [Related]
8. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136 [TBL] [Abstract][Full Text] [Related]
9. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
10. Optimal Ratio of Carbon Flux between Glycolysis and the Pentose Phosphate Pathway for Amino Acid Accumulation in Murai K; Sasaki D; Kobayashi S; Yamaguchi A; Uchikura H; Shirai T; Sasaki K; Kondo A; Tsuge Y ACS Synth Biol; 2020 Jul; 9(7):1615-1622. PubMed ID: 32602337 [TBL] [Abstract][Full Text] [Related]
11. Metabolic analysis of wild-type Escherichia coli and a pyruvate dehydrogenase complex (PDHC)-deficient derivative reveals the role of PDHC in the fermentative metabolism of glucose. Murarka A; Clomburg JM; Moran S; Shanks JV; Gonzalez R J Biol Chem; 2010 Oct; 285(41):31548-58. PubMed ID: 20667837 [TBL] [Abstract][Full Text] [Related]
13. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Wittmann C; Kiefer P; Zelder O Appl Environ Microbiol; 2004 Dec; 70(12):7277-87. PubMed ID: 15574927 [TBL] [Abstract][Full Text] [Related]
14. Analysing overexpression of L-valine biosynthesis genes in pyruvate-dehydrogenase-deficient Corynebacterium glutamicum. Bartek T; Zönnchen E; Klein B; Gerstmeir R; Makus P; Lang S; Oldiges M J Ind Microbiol Biotechnol; 2010 Mar; 37(3):263-70. PubMed ID: 20012552 [TBL] [Abstract][Full Text] [Related]
15. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Kobayashi S; Kawaguchi H; Shirai T; Ninomiya K; Takahashi K; Kondo A; Tsuge Y ACS Synth Biol; 2020 Apr; 9(4):814-826. PubMed ID: 32202411 [TBL] [Abstract][Full Text] [Related]
16. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Kabus A; Georgi T; Wendisch VF; Bott M Appl Microbiol Biotechnol; 2007 May; 75(1):47-53. PubMed ID: 17216441 [TBL] [Abstract][Full Text] [Related]
17. L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Blombach B; Schreiner ME; Holátko J; Bartek T; Oldiges M; Eikmanns BJ Appl Environ Microbiol; 2007 Apr; 73(7):2079-84. PubMed ID: 17293513 [TBL] [Abstract][Full Text] [Related]
18. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Becker J; Klopprogge C; Zelder O; Heinzle E; Wittmann C Appl Environ Microbiol; 2005 Dec; 71(12):8587-96. PubMed ID: 16332851 [TBL] [Abstract][Full Text] [Related]
19. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. Mustafi N; Grünberger A; Mahr R; Helfrich S; Nöh K; Blombach B; Kohlheyer D; Frunzke J PLoS One; 2014; 9(1):e85731. PubMed ID: 24465669 [TBL] [Abstract][Full Text] [Related]
20. L-valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Blombach B; Arndt A; Auchter M; Eikmanns BJ Appl Environ Microbiol; 2009 Feb; 75(4):1197-200. PubMed ID: 19088318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]