These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21784939)

  • 1. Putative role of cellulosomal protease inhibitors in Clostridium cellulovorans based on gene expression and measurement of activities.
    Meguro H; Morisaka H; Kuroda K; Miyake H; Tamaru Y; Ueda M
    J Bacteriol; 2011 Oct; 193(19):5527-30. PubMed ID: 21784939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides.
    Aburaya S; Aoki W; Kuroda K; Minakuchi H; Ueda M
    BMC Microbiol; 2019 Jun; 19(1):118. PubMed ID: 31159733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B.
    Tamaru Y; Miyake H; Kuroda K; Nakanishi A; Kawade Y; Yamamoto K; Uemura M; Fujita Y; Doi RH; Ueda M
    J Bacteriol; 2010 Feb; 192(3):901-2. PubMed ID: 19948806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulosomic profiling produced by Clostridium cellulovorans during growth on different carbon sources explored by the cohesin marker.
    Cho W; Jeon SD; Shim HJ; Doi RH; Han SO
    J Biotechnol; 2010 Feb; 145(3):233-9. PubMed ID: 19958800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans.
    Han SO; Yukawa H; Inui M; Doi RH
    Microbiology (Reading); 2005 May; 151(Pt 5):1491-1497. PubMed ID: 15870459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exoproteome profiles of Clostridium cellulovorans grown on various carbon sources.
    Matsui K; Bae J; Esaka K; Morisaka H; Kuroda K; Ueda M
    Appl Environ Microbiol; 2013 Nov; 79(21):6576-84. PubMed ID: 23956399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing.
    Tamaru Y; Miyake H; Kuroda K; Ueda M; Doi RH
    Environ Technol; 2010; 31(8-9):889-903. PubMed ID: 20662379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of cellulosome-produced cello-oligosaccharides by an extracellular non-cellulosomal beta-glucan glucohydrolase, BglA, from Clostridium cellulovorans.
    Kosugi A; Arai T; Doi RH
    Biochem Biophys Res Commun; 2006 Oct; 349(1):20-3. PubMed ID: 16930544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the mesophilic cellulosome-producing Clostridium cellulovorans genome with other cellulosome-related clostridial genomes.
    Tamaru Y; Miyake H; Kuroda K; Nakanishi A; Matsushima C; Doi RH; Ueda M
    Microb Biotechnol; 2011 Jan; 4(1):64-73. PubMed ID: 21255373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation.
    Arai T; Matsuoka S; Cho HY; Yukawa H; Inui M; Wong SL; Doi RH
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1456-60. PubMed ID: 17244702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae.
    Hyeon JE; Yu KO; Suh DJ; Suh YW; Lee SE; Lee J; Han SO
    FEMS Microbiol Lett; 2010 Sep; 310(1):39-47. PubMed ID: 20637040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes.
    Cha J; Matsuoka S; Chan H; Yukawa H; Inui M; Doi RH
    J Microbiol Biotechnol; 2007 Nov; 17(11):1782-8. PubMed ID: 18092461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides.
    Bayer EA; Belaich JP; Shoham Y; Lamed R
    Annu Rev Microbiol; 2004; 58():521-54. PubMed ID: 15487947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-surface binding domains from Clostridium cellulovorans can be used for surface display of cellulosomal scaffoldins in Lactococcus lactis.
    Tarraran L; Gandini C; Luganini A; Mazzoli R
    Biotechnol J; 2021 Aug; 16(8):e2100064. PubMed ID: 34019730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant proteinases and inhibitors: an overview of biological function and pharmacological activity.
    Gomes MT; Oliva ML; Lopes MT; Salas CE
    Curr Protein Pept Sci; 2011 Aug; 12(5):417-36. PubMed ID: 21418018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the cellulosomal scaffolding protein CbpC from Clostridium cellulovorans 743B.
    Nakajima D; Shibata T; Tanaka R; Kuroda K; Ueda M; Miyake H
    J Biosci Bioeng; 2017 Oct; 124(4):376-380. PubMed ID: 28533157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
    Ortiz de Ora L; Muñoz-Gutiérrez I; Bayer EA; Shoham Y; Lamed R; Borovok I
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic interaction of Clostridium cellulovorans cellulosomal cellulases and HbpA.
    Matsuoka S; Yukawa H; Inui M; Doi RH
    J Bacteriol; 2007 Oct; 189(20):7190-4. PubMed ID: 17693494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity.
    Doi RH; Tamaru Y
    Chem Rec; 2001; 1(1):24-32. PubMed ID: 11893054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae.
    Suzuki H; Imaeda T; Kitagawa T; Kohda K
    J Biotechnol; 2012 Jan; 157(1):64-70. PubMed ID: 22154562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.