These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Granular acoustic switches and logic elements. Li F; Anzel P; Yang J; Kevrekidis PG; Daraio C Nat Commun; 2014 Oct; 5():5311. PubMed ID: 25354587 [TBL] [Abstract][Full Text] [Related]
3. Bistable metamaterial for switching and cascading elastic vibrations. Bilal OR; Foehr A; Daraio C Proc Natl Acad Sci U S A; 2017 May; 114(18):4603-4606. PubMed ID: 28416663 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear quantum heat transfer in hybrid structures: sufficient conditions for thermal rectification. Wu LA; Yu CX; Segal D Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041103. PubMed ID: 19905269 [TBL] [Abstract][Full Text] [Related]
5. Quantum Rectification Based on Room Temperature Multidirectional Nonlinearity in Bi Kumar D; Sharma R; Wang F; Liu Y; Zhao S; Yang H Nano Lett; 2024 Oct; 24(40):12545-12551. PubMed ID: 39329367 [TBL] [Abstract][Full Text] [Related]
6. A Series Circuit of Thermal Rectifiers: An Effective Way to Enhance Rectification Ratio. Hu S; An M; Yang N; Li B Small; 2017 Feb; 13(6):. PubMed ID: 27906495 [TBL] [Abstract][Full Text] [Related]
7. A novel solid-state thermal rectifier based on reduced graphene oxide. Tian H; Xie D; Yang Y; Ren TL; Zhang G; Wang YF; Zhou CJ; Peng PG; Wang LG; Liu LT Sci Rep; 2012; 2():523. PubMed ID: 22826801 [TBL] [Abstract][Full Text] [Related]
9. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization. Wei A; Lahkar S; Li X; Li S; Ye H ACS Appl Mater Interfaces; 2019 Dec; 11(48):45180-45188. PubMed ID: 31746588 [TBL] [Abstract][Full Text] [Related]
10. Computational Study of the Thermal Rectification Properties of a Graphene-Based Nanostructure. Chen J; Meng L ACS Omega; 2022 Aug; 7(32):28030-28040. PubMed ID: 35990432 [TBL] [Abstract][Full Text] [Related]
11. Temperature-gated thermal rectifier for active heat flow control. Zhu J; Hippalgaonkar K; Shen S; Wang K; Abate Y; Lee S; Wu J; Yin X; Majumdar A; Zhang X Nano Lett; 2014 Aug; 14(8):4867-72. PubMed ID: 25010206 [TBL] [Abstract][Full Text] [Related]
12. Experimental evaluation of thermal rectification in a ballistic nanobeam with asymmetric mass gradient. Tavakoli A; Maire J; Brisuda B; Crozes T; Motte JF; Saminadayar L; Collin E; Bourgeois O Sci Rep; 2022 May; 12(1):7788. PubMed ID: 35552495 [TBL] [Abstract][Full Text] [Related]
13. Experimental study of thermal rectification in suspended monolayer graphene. Wang H; Hu S; Takahashi K; Zhang X; Takamatsu H; Chen J Nat Commun; 2017 Jun; 8():15843. PubMed ID: 28607493 [TBL] [Abstract][Full Text] [Related]
14. Border collision bifurcations in a two-dimensional piecewise smooth map from a simple switching circuit. Gardini L; Fournier-Prunaret D; Chargé P Chaos; 2011 Jun; 21(2):023106. PubMed ID: 21721748 [TBL] [Abstract][Full Text] [Related]
15. L-shape triple defects in a phononic crystal for broadband piezoelectric energy harvesting. Jo SH; Yoon H; Shin YC; Choi W; Youn BD; Kim M Nano Converg; 2022 Jun; 9(1):29. PubMed ID: 35705776 [TBL] [Abstract][Full Text] [Related]
16. Ingredients of thermal rectification: the case of classical and quantum self-consistent harmonic chains of oscillators. Pereira E; Lemos HC; Ávila RR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061135. PubMed ID: 22304068 [TBL] [Abstract][Full Text] [Related]
17. Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal. Shakeri A; Darbari S; Moravvej-Farshi MK Ultrasonics; 2019 Feb; 92():8-12. PubMed ID: 30216782 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric acoustic energy transport in non-Hermitian metamaterials. Thevamaran R; Branscomb RM; Makri E; Anzel P; Christodoulides D; Kottos T; Thomas EL J Acoust Soc Am; 2019 Jul; 146(1):863. PubMed ID: 31370575 [TBL] [Abstract][Full Text] [Related]