These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21785574)

  • 1. Sulfolobus mutants, generated via PCR products, which lack putative enzymes of UV photoproduct repair.
    Sakofsky CJ; Runck LA; Grogan DW
    Archaea; 2011; 2011():864015. PubMed ID: 21785574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: implications for DNA repair, conjugation and homologous recombination at extremely high temperatures.
    Schmidt KJ; Beck KE; Grogan DW
    Genetics; 1999 Aug; 152(4):1407-15. PubMed ID: 10430571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Participation of UV-regulated Genes in the Response to Helix-distorting DNA Damage in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius.
    Suzuki S; Kurosawa N
    Microbes Environ; 2019 Dec; 34(4):363-373. PubMed ID: 31548441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of UV irradiation on Sulfolobus acidocaldarius and involvement of the general transcription factor TFB3 in the early UV response.
    Schult F; Le TN; Albersmeier A; Rauch B; Blumenkamp P; van der Does C; Goesmann A; Kalinowski J; Albers SV; Siebers B
    Nucleic Acids Res; 2018 Aug; 46(14):7179-7192. PubMed ID: 29982548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endonucleases responsible for DNA repair of helix-distorting DNA lesions in the thermophilic crenarchaeon Sulfolobus acidocaldarius in vivo.
    Suzuki S; Kurosawa N
    Extremophiles; 2019 Sep; 23(5):613-624. PubMed ID: 31377865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA Processing Proteins Involved in the UV-Induced Stress Response of Sulfolobales.
    van Wolferen M; Ma X; Albers SV
    J Bacteriol; 2015 Sep; 197(18):2941-51. PubMed ID: 26148716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved hexanucleotide motif is important in UV-inducible promoters in Sulfolobus acidocaldarius.
    Le TN; Wagner A; Albers SV
    Microbiology (Reading); 2017 May; 163(5):778-788. PubMed ID: 28463103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of genetic accuracy in mutants of the thermoacidophile Sulfolobus acidocaldarius.
    Bell GD; Grogan DW
    Archaea; 2002 Mar; 1(1):45-52. PubMed ID: 15803658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius.
    van Wolferen M; Ajon M; Driessen AJ; Albers SV
    Microbiologyopen; 2013 Dec; 2(6):928-37. PubMed ID: 24106028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses.
    Kurosawa N; Grogan DW
    FEMS Microbiol Lett; 2005 Dec; 253(1):141-9. PubMed ID: 16243457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius.
    Reimann J; Esser D; Orell A; Amman F; Pham TK; Noirel J; Lindås AC; Bernander R; Wright PC; Siebers B; Albers SV
    Mol Cell Proteomics; 2013 Dec; 12(12):3908-23. PubMed ID: 24078887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius.
    Mao D; Grogan DW
    J Bacteriol; 2017 Sep; 199(17):. PubMed ID: 28630130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene deletions leading to a reduction in the number of cyclopentane rings in Sulfolobus acidocaldarius tetraether lipids.
    Guan Z; Delago A; Nußbaum P; Meyer BH; Albers SV; Eichler J
    FEMS Microbiol Lett; 2018 Jan; 365(1):. PubMed ID: 29211845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The saci_2123 gene of the hyperthermoacidophile Sulfolobus acidocaldarius encodes an ATP-binding cassette multidrug transporter.
    Yang N; Driessen AJ
    Extremophiles; 2015 Jan; 19(1):101-8. PubMed ID: 25138279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of hyperthermophilic crenarchaea to UV irradiation.
    Götz D; Paytubi S; Munro S; Lundgren M; Bernander R; White MF
    Genome Biol; 2007; 8(10):R220. PubMed ID: 17931420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the Multiple Gene Knockout System with One-Step PCR in Thermoacidophilic Crenarchaeon
    Suzuki S; Kurosawa N
    Archaea; 2017; 2017():7459310. PubMed ID: 29225512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 18. Species-Specific Recognition of
    van Wolferen M; Shajahan A; Heinrich K; Brenzinger S; Black IM; Wagner A; Briegel A; Azadi P; Albers SV
    mBio; 2020 Mar; 11(2):. PubMed ID: 32156822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota.
    Chen L; Brügger K; Skovgaard M; Redder P; She Q; Torarinsson E; Greve B; Awayez M; Zibat A; Klenk HP; Garrett RA
    J Bacteriol; 2005 Jul; 187(14):4992-9. PubMed ID: 15995215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius.
    Reilly MS; Grogan DW
    FEMS Microbiol Lett; 2002 Feb; 208(1):29-34. PubMed ID: 11934490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.