These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 21785938)
1. Conformation analysis of a surface loop that controls active site access in the GH11 xylanase A from Bacillus subtilis. Vieira DS; Ward RJ J Mol Model; 2012 Apr; 18(4):1473-9. PubMed ID: 21785938 [TBL] [Abstract][Full Text] [Related]
2. Characterization of temperature dependent and substrate-binding cleft movements in Bacillus circulans family 11 xylanase: a molecular dynamics investigation. Vieira DS; Degrève L; Ward RJ Biochim Biophys Acta; 2009 Oct; 1790(10):1301-6. PubMed ID: 19409448 [TBL] [Abstract][Full Text] [Related]
3. Kinetics and substrate selectivity of a Triticum aestivum xylanase inhibitor (TAXI) resistant D11F/R122D variant of Bacillus subtilis XynA xylanase. Rasmussen LE; Sørensen JF; Meyer AS J Biotechnol; 2010 Apr; 146(4):207-14. PubMed ID: 20188130 [TBL] [Abstract][Full Text] [Related]
4. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays. Sutthibutpong T; Rattanarojpong T; Khunrae P J Biomol Struct Dyn; 2018 Nov; 36(15):3978-3992. PubMed ID: 29129140 [TBL] [Abstract][Full Text] [Related]
5. Crystallographic and activity-based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Pollet A; Vandermarliere E; Lammertyn J; Strelkov SV; Delcour JA; Courtin CM Proteins; 2009 Nov; 77(2):395-403. PubMed ID: 19422059 [TBL] [Abstract][Full Text] [Related]
6. Effects of Xylanase A double mutation on substrate specificity and structural dynamics. MacDonald ME; Wells NGM; Hassan BA; Dudley JA; Walters KJ; Korzhnev DM; Aramini JM; Smith CA J Struct Biol; 2024 Jun; 216(2):108082. PubMed ID: 38438058 [TBL] [Abstract][Full Text] [Related]
7. Mutagenesis and subsite mapping underpin the importance for substrate specificity of the aglycon subsites of glycoside hydrolase family 11 xylanases. Pollet A; Lagaert S; Eneyskaya E; Kulminskaya A; Delcour JA; Courtin CM Biochim Biophys Acta; 2010 Apr; 1804(4):977-85. PubMed ID: 20096384 [TBL] [Abstract][Full Text] [Related]
10. Xylan-specific carbohydrate-binding module belonging to family 6 enhances the catalytic performance of a GH11 endo-xylanase. Hoffmam ZB; Zanphorlin LM; Cota J; Diogo JA; Almeida GB; Damásio AR; Squina F; Murakami MT; Ruller R N Biotechnol; 2016 Jun; 33(4):467-72. PubMed ID: 26923808 [TBL] [Abstract][Full Text] [Related]
11. π-π stacking interaction is a key factor for the stability of GH11 xylanases at low pH. Ge HH; Qiu Y; Yi ZW; Zeng RY; Zhang GY Int J Biol Macromol; 2019 Mar; 124():895-902. PubMed ID: 30517843 [TBL] [Abstract][Full Text] [Related]
12. Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability. Beliën T; Joye IJ; Delcour JA; Courtin CM Protein Eng Des Sel; 2009 Oct; 22(10):587-96. PubMed ID: 19531602 [TBL] [Abstract][Full Text] [Related]
13. Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1). Murakami MT; Arni RK; Vieira DS; Degrève L; Ruller R; Ward RJ FEBS Lett; 2005 Nov; 579(28):6505-10. PubMed ID: 16289057 [TBL] [Abstract][Full Text] [Related]
14. Sequence- and structure-guided improvement of the catalytic performance of a GH11 family xylanase from Bacillus subtilis. Wang L; Cao K; Pedroso MM; Wu B; Gao Z; He B; Schenk G J Biol Chem; 2021 Nov; 297(5):101262. PubMed ID: 34600889 [TBL] [Abstract][Full Text] [Related]
15. Tuning the Transglycosylation Reaction of a GH11 Xylanase by a Delicate Enhancement of its Thumb Flexibility. Marneth K; van den Elst H; Cramer-Blok A; Codee J; Overkleeft HS; Aerts JMFG; Ubbink M; Ben Bdira F Chembiochem; 2021 May; 22(10):1743-1749. PubMed ID: 33534182 [TBL] [Abstract][Full Text] [Related]
16. Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA. Pollet A; Sansen S; Raedschelders G; Gebruers K; Rabijns A; Delcour JA; Courtin CM FEBS J; 2009 Jul; 276(14):3916-27. PubMed ID: 19769747 [TBL] [Abstract][Full Text] [Related]
17. A multifunctional α-amylase BSGH13 from Bacillus subtilis BS-5 possessing endoglucanase and xylanase activities. Liu Z; Li J; Jie C; Wu B; Hao N Int J Biol Macromol; 2021 Feb; 171():166-176. PubMed ID: 33421464 [TBL] [Abstract][Full Text] [Related]
18. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase. Cuyvers S; Dornez E; Abou Hachem M; Svensson B; Hothorn M; Chory J; Delcour JA; Courtin CM Anal Biochem; 2012 Jan; 420(1):90-2. PubMed ID: 21964501 [TBL] [Abstract][Full Text] [Related]
19. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955 [TBL] [Abstract][Full Text] [Related]
20. Impact of an N-terminal extension on the stability and activity of the GH11 xylanase from Thermobacillus xylanilyticus. Song L; Dumon C; Siguier B; André I; Eneyskaya E; Kulminskaya A; Bozonnet S; O'Donohue MJ J Biotechnol; 2014 Mar; 174():64-72. PubMed ID: 24440633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]