These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21785988)

  • 1. Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop.
    Wei Z; Liu Y; Lin C; Wang Y; Cai Q; Dong Y; Xing S
    Biotechnol Lett; 2011 Dec; 33(12):2487-94. PubMed ID: 21785988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration and Expression of gfp in the plastid of Medicago sativa L.
    Xing S; Wei Z; Wang Y; Liu Y; Lin C
    Methods Mol Biol; 2014; 1132():375-87. PubMed ID: 24599868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.).
    Cui C; Song F; Tan Y; Zhou X; Zhao W; Ma F; Liu Y; Hussain J; Wang Y; Yang G; He G
    Acta Biochim Biophys Sin (Shanghai); 2011 Apr; 43(4):284-91. PubMed ID: 21343162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Jellyfish green fluorescent protein as a useful reporter for transient expression and stable transformation in Medicago sativa L.
    Bellucci M; De Marchis F; Mannucci R; Arcioni S
    Plant Cell Rep; 2003 Dec; 22(5):328-37. PubMed ID: 12937943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alfalfa (Medicago sativa L.).
    Samac DA; Austin-Phillips S
    Methods Mol Biol; 2006; 343():301-11. PubMed ID: 16988354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Agrobacterium-mediated genetic transformation of secondary somatic embryos in alfalfa].
    Liu W; Duan Q; Liu J; Sun Y
    Sheng Wu Gong Cheng Xue Bao; 2012 Feb; 28(2):203-13. PubMed ID: 22667122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa).
    Zhang JY; Broeckling CD; Blancaflor EB; Sledge MK; Sumner LW; Wang ZY
    Plant J; 2005 Jun; 42(5):689-707. PubMed ID: 15918883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis of protein structure in proanthocyanidin and anthocyanin-enhanced Lc-transgenic alfalfa in relation to nutritive value using synchrotron-radiation FTIR microspectroscopy: a novel approach.
    Yu P; Jonker A; Gruber M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):846-53. PubMed ID: 19457717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Unified Agrobacterium-Mediated Transformation Protocol for Alfalfa (Medicago sativa L.) and Medicago truncatula.
    Jiang Q; Fu C; Wang ZY
    Methods Mol Biol; 2019; 1864():153-163. PubMed ID: 30415335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast genetic engineering via organogenesis or somatic embryogenesis.
    Dhingra A; Daniell H
    Methods Mol Biol; 2006; 323():245-62. PubMed ID: 16739583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of a modified Mannheimia haemolytica GS60 outer membrane lipoprotein in transgenic alfalfa for the development of an edible vaccine against bovine pneumonic pasteurellosis.
    Lee RW; Cornelisse M; Ziauddin A; Slack PJ; Hodgins DC; Strommer JN; Shewen PE; Lo RY
    J Biotechnol; 2008 Jun; 135(2):224-31. PubMed ID: 18440084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloroplast transformation.
    Lu XM; Yin WB; Hu ZM
    Methods Mol Biol; 2006; 318():285-303. PubMed ID: 16673924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Construction of tobacco chloroplast multicistron site integration expression vector and its transgene].
    Lu YH; Ma LX; Chen J; Jiang SJ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Dec; 31(6):581-8. PubMed ID: 16361784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A point mutation in the Medicago sativa GSA gene provides a novel, efficient, selectable marker for plant genetic engineering.
    Ferradini N; Nicolia A; Capomaccio S; Veronesi F; Rosellini D
    J Biotechnol; 2011 Nov; 156(2):147-52. PubMed ID: 21875626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Factors influencing agrobacterium-mediated transformation of maize elite inbred lines].
    Huang XQ; Wei ZM
    Shi Yan Sheng Wu Xue Bao; 2004 Oct; 37(5):398-408. PubMed ID: 15636368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient method for sonication assisted Agrobacterium-mediated transformation of coat protein (CP) coding genes into papaya (Carica papaya L.).
    Jiang L; Maoka T; Komori S; Fukamachi H; Kato H; Ogawa K
    Shi Yan Sheng Wu Xue Bao; 2004 Jun; 37(3):189-98. PubMed ID: 15323420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic transformation of the sugar beet plastome.
    De Marchis F; Wang Y; Stevanato P; Arcioni S; Bellucci M
    Transgenic Res; 2009 Feb; 18(1):17-30. PubMed ID: 18551377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an in planta method for transformation of alfalfa (Medicago sativa).
    Weeks JT; Ye J; Rommens CM
    Transgenic Res; 2008 Aug; 17(4):587-97. PubMed ID: 17851774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of avian reovirus sigmaC protein in transgenic plants.
    Huang LK; Liao SC; Chang CC; Liu HJ
    J Virol Methods; 2006 Jun; 134(1-2):217-22. PubMed ID: 16488486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contained and high-level production of recombinant protein in plant chloroplasts using a temporary immersion bioreactor.
    Michoux F; Ahmad N; McCarthy J; Nixon PJ
    Plant Biotechnol J; 2011 Jun; 9(5):575-84. PubMed ID: 21105992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.