BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21786815)

  • 1. Quantitative proteomic analysis of the heat stress response in Clostridium difficile strain 630.
    Jain S; Graham C; Graham RL; McMullan G; Ternan NG
    J Proteome Res; 2011 Sep; 10(9):3880-90. PubMed ID: 21786815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of the insoluble subproteome of Clostridium difficile strain 630.
    Jain S; Graham RL; McMullan G; Ternan NG
    FEMS Microbiol Lett; 2010 Nov; 312(2):151-9. PubMed ID: 20868380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global whole-cell FTICR mass spectrometric proteomics analysis of the heat shock response in the radioresistant bacterium Deinococcus radiodurans.
    Schmid AK; Lipton MS; Mottaz H; Monroe ME; Smith RD; Lidstrom ME
    J Proteome Res; 2005; 4(3):709-18. PubMed ID: 15952717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic study of Carissa spinarum in response to combined heat and drought stress.
    Zhang M; Li G; Huang W; Bi T; Chen G; Tang Z; Su W; Sun W
    Proteomics; 2010 Sep; 10(17):3117-29. PubMed ID: 20661954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proteomic response of sea squirts (genus Ciona) to acute heat stress: a global perspective on the thermal stability of proteins.
    Serafini L; Hann JB; Kültz D; Tomanek L
    Comp Biochem Physiol Part D Genomics Proteomics; 2011 Sep; 6(3):322-34. PubMed ID: 21839695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains.
    Chen JW; Scaria J; Mao C; Sobral B; Zhang S; Lawley T; Chang YF
    J Proteome Res; 2013 Mar; 12(3):1151-61. PubMed ID: 23298230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of expression of GroEL (Hsp60) of Clostridium difficile in response to stress.
    Hennequin C; Collignon A; Karjalainen T
    Microb Pathog; 2001 Nov; 31(5):255-60. PubMed ID: 11710845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiquantitative analysis of clinical heat stress in Clostridium difficile strain 630 using a GeLC/MS workflow with emPAI quantitation.
    Ternan NG; Jain S; Graham RL; McMullan G
    PLoS One; 2014; 9(2):e88960. PubMed ID: 24586458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative proteomics analysis by iTRAQ revealed underlying changes in thermotolerance of Arthrospira platensis.
    Chang R; Lv B; Li B
    J Proteomics; 2017 Aug; 165():119-131. PubMed ID: 28645570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach.
    Ahsan N; Donnart T; Nouri MZ; Komatsu S
    J Proteome Res; 2010 Aug; 9(8):4189-204. PubMed ID: 20540562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics.
    Suzuki I; Simon WJ; Slabas AR
    J Exp Bot; 2006; 57(7):1573-8. PubMed ID: 16574748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions.
    Agoston R; Soni K; Jesudhasan PR; Russell WK; Mohácsi-Farkas C; Pillai SD
    Foodborne Pathog Dis; 2009 Nov; 6(9):1133-40. PubMed ID: 19694553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield.
    Mao S; Luo Y; Zhang T; Li J; Bao G; Zhu Y; Chen Z; Zhang Y; Li Y; Ma Y
    J Proteome Res; 2010 Jun; 9(6):3046-61. PubMed ID: 20426490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gel-free quantitative proteomics approach to investigate temperature adaptation of the food-borne pathogen Cronobacter turicensis 3032.
    Carranza P; Grunau A; Schneider T; Hartmann I; Lehner A; Stephan R; Gehrig P; Grossmann J; Groebel K; Hoelzle LE; Eberl L; Riedel K
    Proteomics; 2010 Sep; 10(18):3248-61. PubMed ID: 20718006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene.
    Slabas AR; Suzuki I; Murata N; Simon WJ; Hall JJ
    Proteomics; 2006 Feb; 6(3):845-64. PubMed ID: 16400687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential epithelial and stromal protein profiles in keratoconus and normal human corneas.
    Joseph R; Srivastava OP; Pfister RR
    Exp Eye Res; 2011 Apr; 92(4):282-98. PubMed ID: 21281627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress.
    Tomanek L; Zuzow MJ
    J Exp Biol; 2010 Oct; 213(Pt 20):3559-74. PubMed ID: 20889836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative proteomic analysis of differentially expressed proteins in the earthworm Eisenia fetida during Escherichia coli O157:H7 stress.
    Wang X; Chang L; Sun Z; Zhang Y
    J Proteome Res; 2010 Dec; 9(12):6547-60. PubMed ID: 20863058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat-shock response in Arabidopsis thaliana explored by multiplexed quantitative proteomics using differential metabolic labeling.
    Palmblad M; Mills DJ; Bindschedler LV
    J Proteome Res; 2008 Feb; 7(2):780-5. PubMed ID: 18189342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of protein expression in Streptococcus pneumoniae in response to temperature shift.
    Lee MR; Bae SM; Kim TS; Lee KJ
    J Microbiol; 2006 Aug; 44(4):375-82. PubMed ID: 16953172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.