These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21786904)

  • 1. Extracting the invariant model from the feedback paths of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2011 Jul; 130(1):350-63. PubMed ID: 21786904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a reflection model for modeling the dynamic feedback path of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2010 Mar; 127(3):1458-68. PubMed ID: 20329846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the applicability of instrumental measures for black-box evaluation of static feedback control in hearing aids.
    Madhu N; Wouters J; Spriet A; Bisitz T; Hohmann V; Moonen M
    J Acoust Soc Am; 2011 Aug; 130(2):933-47. PubMed ID: 21877807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of feedback reduction techniques in hearing aids based on physical performance measures.
    Spriet A; Moonen M; Wouters J
    J Acoust Soc Am; 2010 Sep; 128(3):1245-61. PubMed ID: 20815460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic feedback path modeling for hearing aids: Comparison of physical position based and position independent models.
    Sankowsky-Rothe T; Schepker H; Doclo S; Blau M
    J Acoust Soc Am; 2020 Jan; 147(1):85. PubMed ID: 32006989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive feedback cancellation in hearing aids with clipping in the feedback path.
    Freed DJ
    J Acoust Soc Am; 2008 Mar; 123(3):1618-26. PubMed ID: 18345849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies with digital hearing aids.
    Levitt H; Neuman A; Sullivan J
    Acta Otolaryngol Suppl; 1990; 469():57-69. PubMed ID: 2192534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximated affine projection algorithm for feedback cancellation in hearing aids.
    Lee S; Kim IY; Park YC
    Comput Methods Programs Biomed; 2007 Sep; 87(3):254-61. PubMed ID: 17644214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact localization combined with haptic feedback for touch panel applications based on the time-reversal approach.
    Bai MR; Tsai YK
    J Acoust Soc Am; 2011 Mar; 129(3):1297-305. PubMed ID: 21428493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonlinear active noise control algorithm for virtual microphones controlling chaotic noise.
    Das DP; Moreau DJ; Cazzolato BS
    J Acoust Soc Am; 2012 Aug; 132(2):779-88. PubMed ID: 22894200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robustness of an adaptive beamforming method for hearing aids.
    Peterson PM; Wei SM; Rabinowitz WM; Zurek PM
    Acta Otolaryngol Suppl; 1990; 469():85-90. PubMed ID: 2356741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated real-ear measurements of benefit from digital feedback suppression.
    Olsen SØ
    Int J Audiol; 2008 Feb; 47(2):51-8. PubMed ID: 18236236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive environment classification system for hearing aids.
    Lamarche L; Giguère C; Gueaieb W; Aboulnasr T; Othman H
    J Acoust Soc Am; 2010 May; 127(5):3124-35. PubMed ID: 21117761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a signal cancellation technique involving impulse response to assess directivity of hearing aids.
    Wu YH; Bentler RA
    J Acoust Soc Am; 2009 Dec; 126(6):3214-26. PubMed ID: 20000935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new delayless sub-band filtering method for cancelling the effect of feedback path in hearing aid systems.
    Khoubrouy SA; Panahi IM; Milani AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7920-3. PubMed ID: 22256177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of hearing impairment in older adults: perspectives for rehabilitation with hearing aids.
    Natalizia A; Casale M; Guglielmelli E; Rinaldi V; Bressi F; Salvinelli F
    Eur Rev Med Pharmacol Sci; 2010 Mar; 14(3):223-9. PubMed ID: 20391963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative learning-based decentralized adaptive tracker for large-scale systems: a digital redesign approach.
    Tsai JS; Du YY; Huang PH; Guo SM; Shieh LS; Chen Y
    ISA Trans; 2011 Jul; 50(3):344-56. PubMed ID: 21333988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive feedback stabilization of hearing aids.
    Engebretson AM; French-St George M; O'Connell MP
    Scand Audiol Suppl; 1993; 38():56-64. PubMed ID: 8153565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-hardware Hamilton-Jacobi solver.
    Jeong WK; Fletcher PT; Tao R; Whitaker R
    IEEE Trans Vis Comput Graph; 2007; 13(6):1480-7. PubMed ID: 17968100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A time-domain digital simulation of hearing aid response.
    Kates JM
    J Rehabil Res Dev; 1990; 27(3):279-94. PubMed ID: 2401958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.