These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21786919)

  • 21. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of lips on the production of vowels based on finite element simulations and experiments.
    Arnela M; Blandin R; Dabbaghchian S; Guasch O; Alías F; Pelorson X; Van Hirtum A; Engwall O
    J Acoust Soc Am; 2016 May; 139(5):2852. PubMed ID: 27250177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
    Tao C; Liu X
    J Acoust Soc Am; 2011 Feb; 129(2):934-43. PubMed ID: 21361450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering.
    Daley M; Goller F
    J Neurobiol; 2004 Jun; 59(3):319-30. PubMed ID: 15146548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical modeling of register transitions and the role of vocal tract resonators.
    Tokuda IT; Zemke M; Kob M; Herzel H
    J Acoust Soc Am; 2010 Mar; 127(3):1528-36. PubMed ID: 20329853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vocal tract configurations in tenors' passaggio in different vowel conditions-a real-time magnetic resonance imaging study.
    Echternach M; Traser L; Richter B
    J Voice; 2014 Mar; 28(2):262.e1-262.e8. PubMed ID: 24412038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling source-filter interaction in belting and high-pitched operatic male singing.
    Titze IR; Worley AS
    J Acoust Soc Am; 2009 Sep; 126(3):1530. PubMed ID: 19739766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do trumpet players tune resonances of the vocal tract?
    Chen JM; Smith J; Wolfe J
    J Acoust Soc Am; 2012 Jan; 131(1):722-7. PubMed ID: 22280694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Education in acoustics and speech science using vocal-tract models.
    Arai T
    J Acoust Soc Am; 2012 Mar; 131(3):2444-54. PubMed ID: 22423792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pitch bending and glissandi on the clarinet: roles of the vocal tract and partial tone hole closure.
    Chen JM; Smith J; Wolfe J
    J Acoust Soc Am; 2009 Sep; 126(3):1511-20. PubMed ID: 19739764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vocal tract resonances and the sound of the Australian didjeridu (yidaki) I. experiment.
    Tarnopolsky AZ; Fletcher NH; Hollenberg LC; Lange BD; Smith J; Wolfe J
    J Acoust Soc Am; 2006 Feb; 119(2):1194-204. PubMed ID: 16521780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method.
    Takemoto H; Mokhtari P; Kitamura T
    J Acoust Soc Am; 2010 Dec; 128(6):3724-38. PubMed ID: 21218904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motion of the lips of brass players during extremely loud playing.
    Stevenson S; Campbell M; Bromage S; Chick J; Gilbert J
    J Acoust Soc Am; 2009 Apr; 125(4):EL152-7. PubMed ID: 19354354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Limits on tongue deformation--Diana monkey formants and the impossible vocal tract shapes proposed by Riede et al. (2005).
    Lieberman P
    J Hum Evol; 2006 Feb; 50(2):219-21; discussion 222-5. PubMed ID: 16376410
    [No Abstract]   [Full Text] [Related]  

  • 36. Vocal tract area function for vowels using three-dimensional magnetic resonance imaging. A preliminary study.
    Clément P; Hans S; Hartl DM; Maeda S; Vaissière J; Brasnu D
    J Voice; 2007 Sep; 21(5):522-30. PubMed ID: 16581228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vocal tract resonances and the sound of the Australian didjeridu (yidaki) II. Theory.
    Fletcher NH; Hollenberg LC; Smith J; Tarnopolsky AZ; Wolfe J
    J Acoust Soc Am; 2006 Feb; 119(2):1205-13. PubMed ID: 16521781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vocal tract resonances and the sound of the Australian didjeridu (yidaki). III. Determinants of playing quality.
    Smith J; Rey G; Dickens P; Fletcher N; Hollenberg L; Wolfe J
    J Acoust Soc Am; 2007 Jan; 121(1):547-58. PubMed ID: 17297808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.