These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 21787012)

  • 1. Atomic decomposition of the protein solvation free energy and its application to amyloid-beta protein in water.
    Chong SH; Ham S
    J Chem Phys; 2011 Jul; 135(3):034506. PubMed ID: 21787012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
    Chong SH; Ham S
    Acc Chem Res; 2015 Apr; 48(4):956-65. PubMed ID: 25844814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water.
    Lee C; Ham S
    J Comput Chem; 2011 Jan; 32(2):349-55. PubMed ID: 20734314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T; Kovalenko A
    J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication: Free-energy analysis of hydration effect on protein with explicit solvent: equilibrium fluctuation of cytochrome c.
    Karino Y; Matubayasi N
    J Chem Phys; 2011 Jan; 134(4):041105. PubMed ID: 21280680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc binding promotes greater hydrophobicity in Alzheimer's Aβ42 peptide than copper binding: Molecular dynamics and solvation thermodynamics studies.
    Boopathi S; Dinh Quoc Huy P; Gonzalez W; Theodorakis PE; Li MS
    Proteins; 2020 Oct; 88(10):1285-1302. PubMed ID: 32419254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the Arctic (E22-->G) mutation on amyloid beta-protein folding: discrete molecular dynamics study.
    Lam AR; Teplow DB; Stanley HE; Urbanc B
    J Am Chem Soc; 2008 Dec; 130(51):17413-22. PubMed ID: 19053400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Thermodynamic Characteristics That Seed Aggregation of Amyloid-β Protein in Water.
    Chong SH; Park M; Ham S
    J Chem Theory Comput; 2012 Feb; 8(2):724-34. PubMed ID: 26596619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halothane solvation in water and organic solvents from molecular simulations with new polarizable potential function.
    Subbotina JO; Johannes J; Lev B; Noskov SY
    J Phys Chem B; 2010 May; 114(19):6401-8. PubMed ID: 20411978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox entropy of plastocyanin: developing a microscopic view of mesoscopic polar solvation.
    LeBard DN; Matyushov DV
    J Chem Phys; 2008 Apr; 128(15):155106. PubMed ID: 18433287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water.
    Wang ZX; Duan Y
    J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the structural and thermodynamic properties of Aβ42 and Aβ40.
    Lin Y; Im H; Diem LT; Ham S
    Biochem Biophys Res Commun; 2019 Mar; 510(3):442-448. PubMed ID: 30722990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational analysis of endothelin-1: effects of solvation free energy.
    Hempel JC; Fine RM; Hassan M; Ghoul W; Guaragna A; Koerber SC; Li Z; Hagler AT
    Biopolymers; 1995 Sep; 36(3):283-301. PubMed ID: 7669916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyproline II helix is the preferred conformation for unfolded polyalanine in water.
    Mezei M; Fleming PJ; Srinivasan R; Rose GD
    Proteins; 2004 May; 55(3):502-7. PubMed ID: 15103614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation.
    Pei J; Wang Q; Zhou J; Lai L
    Proteins; 2004 Dec; 57(4):651-64. PubMed ID: 15390269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.