These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21787297)

  • 1. Computational methods for identification of functional residues in protein structures.
    Xin F; Radivojac P
    Curr Protein Pept Sci; 2011 Sep; 12(6):456-69. PubMed ID: 21787297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The construction of an amino acid network for understanding protein structure and function.
    Yan W; Zhou J; Sun M; Chen J; Hu G; Shen B
    Amino Acids; 2014 Jun; 46(6):1419-39. PubMed ID: 24623120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of deleterious functional effects of amino acid mutations using a library of structure-based function descriptors.
    Herrgard S; Cammer SA; Hoffman BT; Knutson S; Gallina M; Speir JA; Fetrow JS; Baxter SM
    Proteins; 2003 Dec; 53(4):806-16. PubMed ID: 14635123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid network for prediction of catalytic residues in enzymes: a comparison survey.
    Zhou J; Yan W; Hu G; Shen B
    Curr Protein Pept Sci; 2016; 17(1):41-51. PubMed ID: 26412789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
    Chien YT; Huang SW
    PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design.
    Cheng G; Qian B; Samudrala R; Baker D
    Nucleic Acids Res; 2005; 33(18):5861-7. PubMed ID: 16224101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features.
    Pugalenthi G; Kumar KK; Suganthan PN; Gangal R
    Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.
    Borguesan B; Inostroza-Ponta M; Dorn M
    J Comput Biol; 2017 Mar; 24(3):255-265. PubMed ID: 27494258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CoeViz: a web-based tool for coevolution analysis of protein residues.
    Baker FN; Porollo A
    BMC Bioinformatics; 2016 Mar; 17():119. PubMed ID: 26956673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the relationship between catalytic residues and their protein contact number.
    Huang SW; Yu SH; Shih CH; Guan HW; Huang TT; Hwang JK
    Curr Protein Pept Sci; 2011 Sep; 12(6):574-9. PubMed ID: 21787303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of amino acid positions specific for functional groups in a protein family based on local sequence similarity.
    Karasev DA; Veselovsky AV; Oparina NY; Filimonov DA; Sobolev BN
    J Mol Recognit; 2016 Apr; 29(4):159-69. PubMed ID: 26549790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NEAT-FLEX: Predicting the conformational flexibility of amino acids using neuroevolution of augmenting topologies.
    Grisci B; Dorn M
    J Bioinform Comput Biol; 2017 Jun; 15(3):1750009. PubMed ID: 28403668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HseSUMO: Sumoylation site prediction using half-sphere exposures of amino acids residues.
    Sharma A; Lysenko A; López Y; Dehzangi A; Sharma R; Reddy H; Sattar A; Tsunoda T
    BMC Genomics; 2019 Apr; 19(Suppl 9):982. PubMed ID: 30999862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PredCSO: an ensemble method for the prediction of S-sulfenylation sites in proteins.
    Deng L; Xu X; Liu H
    Mol Omics; 2018 Aug; 14(4):257-265. PubMed ID: 29942948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional importance of co-evolving residues in proteins.
    Sandler I; Zigdon N; Levy E; Aharoni A
    Cell Mol Life Sci; 2014 Feb; 71(4):673-82. PubMed ID: 23995987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis and prediction of amino acid variations that influence protein posttranslational modifications.
    Shi S; Wang L; Cao M; Chen G; Yu J
    Brief Bioinform; 2019 Sep; 20(5):1597-1606. PubMed ID: 29788276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Binding Affinity of Pathological Mutations for Computational Protein Design.
    Romero-Durana M; Pallara C; Glaser F; Fernández-Recio J
    Methods Mol Biol; 2017; 1529():139-159. PubMed ID: 27914049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. firestar--prediction of functionally important residues using structural templates and alignment reliability.
    López G; Valencia A; Tress ML
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W573-7. PubMed ID: 17584799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.