These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2178731)

  • 1. Making magnetic resonance images and beyond.
    Henkelman RM; Kucharczyk W; Bronskill MJ
    Can Assoc Radiol J; 1990 Feb; 41(1):8-13. PubMed ID: 2178731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative MR imaging: physical principles and sequence design in abdominal imaging.
    Shah B; Anderson SW; Scalera J; Jara H; Soto JA
    Radiographics; 2011; 31(3):867-80. PubMed ID: 21571662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic contrast-enhanced breast MR imaging.
    Moon M; Cornfeld D; Weinreb J
    Magn Reson Imaging Clin N Am; 2009 May; 17(2):351-62. PubMed ID: 19406363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils.
    Gensanne D; Josse G; Lagarde JM; Vincensini D
    Phys Med Biol; 2006 Jun; 51(11):2843-55. PubMed ID: 16723770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current technological advances in magnetic resonance with critical impact for clinical diagnosis and therapy.
    Runge VM
    Invest Radiol; 2013 Dec; 48(12):869-77. PubMed ID: 24126386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of 3.0-T MR imaging for evaluation of the abdomen.
    Erturk SM; Alberich-Bayarri A; Herrmann KA; Marti-Bonmati L; Ros PR
    Radiographics; 2009 Oct; 29(6):1547-63. PubMed ID: 19959507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased MR image contrast by correlation of tissue relaxation properties.
    Mastikhin IV; Lukzen NN; Zelentzov EL; Sagdeev RZ
    Magn Reson Med; 1995 Jun; 33(6):832-7. PubMed ID: 7651121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of magnetic resonance images using a decision tree with spatial information.
    Chao WH; Chen YY; Lin SH; Shih YY; Tsang S
    Comput Med Imaging Graph; 2009 Mar; 33(2):111-21. PubMed ID: 19097854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional constructive interference in steady-state magnetic resonance imaging in syringomyelia: advantages over conventional imaging.
    Roser F; Ebner FH; Danz S; Riether F; Ritz R; Dietz K; Naegele T; Tatagiba MS
    J Neurosurg Spine; 2008 May; 8(5):429-35. PubMed ID: 18447688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging and the reduction of motion artifacts: review of the principles.
    Van de Walle R; Lemahieu I; Achten E
    Technol Health Care; 1997 Dec; 5(6):419-35. PubMed ID: 9696161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging as a potential gold standard for infarct quantification.
    Carlsson M; Arheden H; Higgins CB; Saeed M
    J Electrocardiol; 2008; 41(6):614-20. PubMed ID: 18817927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thoracic magnetic resonance imaging: physics and pulse sequences.
    Mayo JR
    J Thorac Imaging; 1993; 8(1):1-11. PubMed ID: 8418314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PET/MR imaging: current and future applications for cardiovascular disease.
    Naeger DM; Behr SC
    Magn Reson Imaging Clin N Am; 2015 Feb; 23(1):95-103. PubMed ID: 25476678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steady-state MR imaging sequences: physics, classification, and clinical applications.
    Chavhan GB; Babyn PS; Jankharia BG; Cheng HL; Shroff MM
    Radiographics; 2008; 28(4):1147-60. PubMed ID: 18635634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An image-based approach to understanding the physics of MR artifacts.
    Morelli JN; Runge VM; Ai F; Attenberger U; Vu L; Schmeets SH; Nitz WR; Kirsch JE
    Radiographics; 2011; 31(3):849-66. PubMed ID: 21571661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium signal intensity mapping, an MRI method for fast mapping of longitudinal relaxation rates and for image enhancement.
    Surányi P; Kiss P; Ruzsics B; Brott BC; Simor T; Elgavish GA
    Magn Reson Imaging; 2007 Jun; 25(5):641-51. PubMed ID: 17540275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-body high-field-strength (3.0-T) MR Imaging in Clinical Practice. Part I. Technical considerations and clinical applications.
    Kuhl CK; Träber F; Schild HH
    Radiology; 2008 Mar; 246(3):675-96. PubMed ID: 18309012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3.0-T MR imaging of the abdomen: comparison with 1.5 T.
    Chang KJ; Kamel IR; Macura KJ; Bluemke DA
    Radiographics; 2008; 28(7):1983-98. PubMed ID: 19001653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of orthodontic appliances on the quality of craniofacial anatomical magnetic resonance imaging and real-time speech imaging.
    Wylezinska M; Pinkstone M; Hay N; Scott AD; Birch MJ; Miquel ME
    Eur J Orthod; 2015 Dec; 37(6):610-7. PubMed ID: 25667040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation time estimation from complex magnetic resonance images.
    Baselice F; Ferraioli G; Pascazio V
    Sensors (Basel); 2010; 10(4):3611-25. PubMed ID: 22319315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.