BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 2178756)

  • 1. The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity.
    Andrews PL; Davis CJ; Bingham S; Davidson HI; Hawthorn J; Maskell L
    Can J Physiol Pharmacol; 1990 Feb; 68(2):325-45. PubMed ID: 2178756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noxious stimulation of emesis.
    Lang IM
    Dig Dis Sci; 1999 Aug; 44(8 Suppl):58S-63S. PubMed ID: 10490041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of TRPV1 in emesis and anti-emesis.
    Rudd JA; Nalivaiko E; Matsuki N; Wan C; Andrews PL
    Temperature (Austin); 2015; 2(2):258-76. PubMed ID: 27227028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anti-emetic effects of CP-99,994 in the ferret and the dog: role of the NK1 receptor.
    Watson JW; Gonsalves SF; Fossa AA; McLean S; Seeger T; Obach S; Andrews PL
    Br J Pharmacol; 1995 May; 115(1):84-94. PubMed ID: 7544198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anti-emetic action of the neurokinin(1) receptor antagonist CP-99,994 does not require the presence of the area postrema in the dog.
    Andrews PL; Kovacs M; Watson JW
    Neurosci Lett; 2001 Nov; 314(1-2):102-4. PubMed ID: 11698156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal models in the study of vomiting.
    King GL
    Can J Physiol Pharmacol; 1990 Feb; 68(2):260-8. PubMed ID: 2178751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neurophysiology of vomiting.
    Andrews PL; Hawthorn J
    Baillieres Clin Gastroenterol; 1988 Jan; 2(1):141-68. PubMed ID: 3289638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropharmacology of emesis in relation to clinical response.
    Costall B; Naylor RJ
    Br J Cancer Suppl; 1992 Dec; 19():S2-7; discussion S7-8. PubMed ID: 1467196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural mechanisms of emesis.
    Carpenter DO
    Can J Physiol Pharmacol; 1990 Feb; 68(2):230-6. PubMed ID: 2178747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the anti-emetic activity of 5-HT3 receptor antagonists.
    Tyers MB; Freeman AJ
    Oncology; 1992; 49(4):263-8. PubMed ID: 1387926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The delayed phase of cisplatin-induced emesis is mediated by the area postrema and not the abdominal visceral innervation in the ferret.
    Percie du Sert N; Rudd JA; Moss R; Andrews PL
    Neurosci Lett; 2009 Nov; 465(1):16-20. PubMed ID: 19733218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret.
    Sharkey KA; Cristino L; Oland LD; Van Sickle MD; Starowicz K; Pittman QJ; Guglielmotti V; Davison JS; Di Marzo V
    Eur J Neurosci; 2007 May; 25(9):2773-82. PubMed ID: 17459108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neuropharmacology of loperamide-induced emesis in the ferret: the role of the area postrema, vagus, opiate and 5-HT3 receptors.
    Bhandari P; Bingham S; Andrews PL
    Neuropharmacology; 1992 Aug; 31(8):735-42. PubMed ID: 1326727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central neurocircuitry associated with emesis.
    Hornby PJ
    Am J Med; 2001 Dec; 111 Suppl 8A():106S-112S. PubMed ID: 11749934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of vagal and splanchnic nerve section on Fos expression in ferret brain stem after emetic stimuli.
    Boissonade FM; Davison JS
    Am J Physiol; 1996 Jul; 271(1 Pt 2):R228-36. PubMed ID: 8760225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of substance P and NK(1) receptor in the brainstem in the development of emesis.
    Saito R; Takano Y; Kamiya HO
    J Pharmacol Sci; 2003 Feb; 91(2):87-94. PubMed ID: 12686752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The area postrema and vomiting.
    Miller AD; Leslie RA
    Front Neuroendocrinol; 1994 Dec; 15(4):301-20. PubMed ID: 7895890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential hypoglycaemic, anorectic, autonomic and emetic effects of the glucagon-like peptide receptor agonist, exendin-4, in the conscious telemetered ferret.
    Lu Z; Percie Du Sert N; Chan SW; Yeung CK; Lin G; Yew DT; Andrews PL; Rudd JA
    J Transl Med; 2014 Dec; 12():327. PubMed ID: 25491123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of CP-99, 994, a tachykinin NK(1) receptor antagonist, on abdominal afferent vagal activity in ferrets: evidence for involvement of NK(1) and 5-HT(3) receptors.
    Minami M; Endo T; Yokota H; Ogawa T; Nemoto M; Hamaue N; Hirafuji M; Yoshioka M; Nagahisa A; Andrews PL
    Eur J Pharmacol; 2001 Oct; 428(2):215-20. PubMed ID: 11675038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-HT3 receptor agonism may be responsible for the emetic effects of zacopride in the ferret.
    Middlefell VC; Price TL
    Br J Pharmacol; 1991 May; 103(1):1011-2. PubMed ID: 1831684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.