These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 21788095)
1. Methyl jasmonate-induced defense responses are associated with elevation of 1-aminocyclopropane-1-carboxylate oxidase in Lycopersicon esculentum fruit. Yu M; Shen L; Zhang A; Sheng J J Plant Physiol; 2011 Oct; 168(15):1820-7. PubMed ID: 21788095 [TBL] [Abstract][Full Text] [Related]
2. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit. Yu W; Zhao R; Sheng J; Shen L J Agric Food Chem; 2018 Sep; 66(38):9923-9932. PubMed ID: 30192535 [TBL] [Abstract][Full Text] [Related]
3. CRISPR/Cas9-Mediated Shu P; Li Z; Min D; Zhang X; Ai W; Li J; Zhou J; Li Z; Li F; Li X J Agric Food Chem; 2020 May; 68(20):5529-5538. PubMed ID: 32372640 [TBL] [Abstract][Full Text] [Related]
4. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Concha CM; Figueroa NE; Poblete LA; Oñate FA; Schwab W; Figueroa CR Plant Physiol Biochem; 2013 Sep; 70():433-44. PubMed ID: 23835361 [TBL] [Abstract][Full Text] [Related]
5. Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Wu CT; Bradford KJ Plant Physiol; 2003 Sep; 133(1):263-73. PubMed ID: 12970492 [TBL] [Abstract][Full Text] [Related]
6. Ethylene Perception Is Associated with Methyl-Jasmonate-Mediated Immune Response against Botrytis cinerea in Tomato Fruit. Yu W; Yu M; Zhao R; Sheng J; Li Y; Shen L J Agric Food Chem; 2019 Jun; 67(24):6725-6735. PubMed ID: 31117506 [TBL] [Abstract][Full Text] [Related]
7. Methyl Jasmonate Enhances Ethylene Synthesis in Kiwifruit by Inducing Wu YY; Liu XF; Fu BL; Zhang QY; Tong Y; Wang J; Wang WQ; Grierson D; Yin XR J Agric Food Chem; 2020 Mar; 68(10):3267-3276. PubMed ID: 32101430 [TBL] [Abstract][Full Text] [Related]
8. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Ding CK; Wang CY; Gross KC; Smith DL Planta; 2002 Apr; 214(6):895-901. PubMed ID: 11941466 [TBL] [Abstract][Full Text] [Related]
9. SlARG2 contributes to MeJA-induced defense responses to Botrytis cinerea in tomato fruit. Min D; Ai W; Zhou J; Li J; Zhang X; Li Z; Shi Z; Li F; Li X; Guo Y Pest Manag Sci; 2020 Sep; 76(9):3292-3301. PubMed ID: 32384210 [TBL] [Abstract][Full Text] [Related]
10. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Zhang M; Yuan B; Leng P J Exp Bot; 2009; 60(6):1579-88. PubMed ID: 19246595 [TBL] [Abstract][Full Text] [Related]
11. LeMAPK4 participated in cold-induced ethylene production in tomato fruit. Zhao R; Xie H; Lv S; Zheng Y; Yu M; Shen L; Sheng J J Sci Food Agric; 2013 Mar; 93(5):1003-9. PubMed ID: 23446913 [TBL] [Abstract][Full Text] [Related]
12. SlMYC2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea. Min D; Li F; Cui X; Zhou J; Li J; Ai W; Shu P; Zhang X; Li X; Meng D; Guo Y; Li J Food Chem; 2020 Apr; 310():125901. PubMed ID: 31816533 [TBL] [Abstract][Full Text] [Related]
13. The Co-regulation of Ethylene Biosynthesis and Ascorbate-Glutathione Cycle by Methy Jasmonate Contributes to Aroma Formation of Tomato Fruit during Postharvest Ripening. Min D; Li Z; Ai W; Li J; Zhou J; Zhang X; Mu D; Li F; Li X; Guo Y J Agric Food Chem; 2020 Sep; 68(39):10822-10832. PubMed ID: 32866003 [TBL] [Abstract][Full Text] [Related]
14. Cloning, identification and expression analysis of ACC oxidase gene involved in ethylene production pathway. Jafari Z; Haddad R; Hosseini R; Garoosi G Mol Biol Rep; 2013 Feb; 40(2):1341-50. PubMed ID: 23076530 [TBL] [Abstract][Full Text] [Related]
15. Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. Yao HJ; Tian SP J Appl Microbiol; 2005; 98(4):941-50. PubMed ID: 15752341 [TBL] [Abstract][Full Text] [Related]
16. Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit. Saavedra GM; Sanfuentes E; Figueroa PM; Figueroa CR Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671619 [TBL] [Abstract][Full Text] [Related]
17. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. Wang K; Liao Y; Kan J; Han L; Zheng Y Int J Food Microbiol; 2015 Feb; 194():32-9. PubMed ID: 25461606 [TBL] [Abstract][Full Text] [Related]
18. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea. Wang H; Kou X; Wu C; Fan G; Li T J Sci Food Agric; 2020 Aug; 100(11):4272-4281. PubMed ID: 32378217 [TBL] [Abstract][Full Text] [Related]
19. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria. Yim WJ; Kim KY; Lee YW; Sundaram SP; Lee Y; Sa TM J Plant Physiol; 2014 Jul; 171(12):1064-75. PubMed ID: 24974333 [TBL] [Abstract][Full Text] [Related]
20. The pattern of 1-aminocyclopropane-1-carboxylate oxidase induction in the tomato leaf petiole abscission zone is independent of expression of the ribonuclease-LX-encoding LeLX gene. Chersicola M; Kladnik A; Tušek Žnidarič M; Lers A; Dermastia M Plant Biol (Stuttg); 2018 Jul; 20(4):722-728. PubMed ID: 29633546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]