These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 21788533)
1. Plant water status and hydraulic conductance during flowering in the southern California coastal sage shrub Salvia mellifera (Lamiaceae). Lambrecht SC; Santiago LS; DeVan CM; Cervera JC; Stripe CM; Buckingham LA; Pasquini SC Am J Bot; 2011 Aug; 98(8):1286-92. PubMed ID: 21788533 [TBL] [Abstract][Full Text] [Related]
2. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014 [TBL] [Abstract][Full Text] [Related]
3. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Domec JC; Noormets A; King JS; Sun G; McNulty SG; Gavazzi MJ; Boggs JL; Treasure EA Plant Cell Environ; 2009 Aug; 32(8):980-91. PubMed ID: 19344336 [TBL] [Abstract][Full Text] [Related]
4. The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance. Solari LI; DeJong TM J Exp Bot; 2006; 57(9):1981-9. PubMed ID: 16690626 [TBL] [Abstract][Full Text] [Related]
5. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill. Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831 [TBL] [Abstract][Full Text] [Related]
7. Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure. Yang SJ; Zhang YJ; Sun M; Goldstein G; Cao KF Tree Physiol; 2012 Apr; 32(4):414-22. PubMed ID: 22499596 [TBL] [Abstract][Full Text] [Related]
8. Leaf-lamina conductance contributes to an equal distribution of water delivery in current-year shoots of kudzu-vine shoot, Pueraria lobata. Taneda H; Tateno M Tree Physiol; 2011 Jul; 31(7):782-94. PubMed ID: 21813514 [TBL] [Abstract][Full Text] [Related]
9. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO(2) (free-air CO(2) enrichment) and N-fertilization. Domec JC; Palmroth S; Ward E; Maier CA; Thérézien M; Oren R Plant Cell Environ; 2009 Nov; 32(11):1500-12. PubMed ID: 19558405 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area. Zhang Y; Oren R; Kang S Tree Physiol; 2012 Mar; 32(3):262-79. PubMed ID: 22157418 [TBL] [Abstract][Full Text] [Related]
11. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species. Blackman CJ; Brodribb TJ; Jordan GJ Plant Cell Environ; 2009 Nov; 32(11):1584-95. PubMed ID: 19627564 [TBL] [Abstract][Full Text] [Related]
12. Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species. Johnson DM; McCulloh KA; Meinzer FC; Woodruff DR; Eissenstat DM Tree Physiol; 2011 Jun; 31(6):659-68. PubMed ID: 21724585 [TBL] [Abstract][Full Text] [Related]
13. Daily irrigation attenuates xylem abscisic acid concentration and increases leaf water potential of Pelargonium × hortorum compared with infrequent irrigation. Boyle RK; McAinsh M; Dodd IC Physiol Plant; 2016 Sep; 158(1):23-33. PubMed ID: 26910008 [TBL] [Abstract][Full Text] [Related]
14. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Guyot G; Scoffoni C; Sack L Plant Cell Environ; 2012 May; 35(5):857-71. PubMed ID: 22070647 [TBL] [Abstract][Full Text] [Related]
15. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants. Romero P; Botía P; Keller M J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386 [TBL] [Abstract][Full Text] [Related]
16. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943 [TBL] [Abstract][Full Text] [Related]
17. Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Franks PJ; Drake PL; Froend RH Plant Cell Environ; 2007 Jan; 30(1):19-30. PubMed ID: 17177873 [TBL] [Abstract][Full Text] [Related]
18. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration. Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583 [TBL] [Abstract][Full Text] [Related]
19. Hydraulic responses of whole vines and individual roots of kiwifruit (Actinidia chinensis) following root severance. Black MZ; Patterson KJ; Minchin PE; Gould KS; Clearwater MJ Tree Physiol; 2011 May; 31(5):508-18. PubMed ID: 21636692 [TBL] [Abstract][Full Text] [Related]
20. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. Johnson DM; Woodruff DR; McCulloh KA; Meinzer FC Tree Physiol; 2009 Jul; 29(7):879-87. PubMed ID: 19429900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]