These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 21789218)
1. Monitoring fetal electrocortical activity during labour for predicting worsening acidemia: a prospective study in the ovine fetus near term. Frasch MG; Keen AE; Gagnon R; Ross MG; Richardson BS PLoS One; 2011; 6(7):e22100. PubMed ID: 21789218 [TBL] [Abstract][Full Text] [Related]
2. Adaptive shut-down of EEG activity predicts critical acidemia in the near-term ovine fetus. Frasch MG; Durosier LD; Gold N; Cao M; Matushewski B; Keenliside L; Louzoun Y; Ross MG; Richardson BS Physiol Rep; 2015 Jul; 3(7):. PubMed ID: 26149280 [TBL] [Abstract][Full Text] [Related]
3. Is short-term-variation of fetal-heart-rate a better predictor of fetal acidaemia in labour? A feasibility study. Kapaya H; Jacques R; Almond T; Rosser MH; Anumba D PLoS One; 2020; 15(8):e0236982. PubMed ID: 32745099 [TBL] [Abstract][Full Text] [Related]
4. Online detection of fetal acidemia during labour by testing synchronization of EEG and heart rate: a prospective study in fetal sheep. Wang X; Durosier LD; Ross MG; Richardson BS; Frasch MG PLoS One; 2014; 9(9):e108119. PubMed ID: 25268842 [TBL] [Abstract][Full Text] [Related]
5. Accelerated acidosis in response to variable fetal heart rate decelerations in chronically hypoxic ovine fetuses. Amaya KE; Matushewski B; Durosier LD; Frasch MG; Richardson BS; Ross MG Am J Obstet Gynecol; 2016 Feb; 214(2):270.e1-270.e8. PubMed ID: 26433172 [TBL] [Abstract][Full Text] [Related]
6. Fetal Cardiovascular Decompensation During Labor Predicted From the Individual Heart Rate Tracing: A Machine Learning Approach in Near-Term Fetal Sheep Model. Gold N; Herry CL; Wang X; Frasch MG Front Pediatr; 2021; 9():593889. PubMed ID: 34026680 [No Abstract] [Full Text] [Related]
7. Peripheral chemoreflex control of fetal heart rate decelerations overwhelms the baroreflex during brief umbilical cord occlusions in fetal sheep. Lear CA; Kasai M; Booth LC; Drury PP; Davidson JO; Maeda Y; Magawa S; Miyagi E; Ikeda T; Westgate JA; Bennet L; Gunn AJ J Physiol; 2020 Oct; 598(20):4523-4536. PubMed ID: 32705685 [TBL] [Abstract][Full Text] [Related]
8. Sampling frequency of fetal heart rate impacts the ability to predict pH and BE at birth: a retrospective multi-cohort study. Li X; Xu Y; Herry C; Durosier LD; Casati D; Stampalija T; Maisonneuve E; Seely AJ; Audibert F; Alfirevic Z; Ferrazzi E; Wang X; Frasch MG Physiol Meas; 2015 May; 36(5):L1-12. PubMed ID: 25893461 [TBL] [Abstract][Full Text] [Related]
9. Dissecting the contributions of the peripheral chemoreflex and myocardial hypoxia to fetal heart rate decelerations in near-term fetal sheep. Lear CA; Beacom MJ; Dhillon SK; Lear BA; Mills OJ; Gunning MI; Westgate JA; Bennet L; Gunn AJ J Physiol; 2023 May; 601(10):2017-2041. PubMed ID: 37017488 [TBL] [Abstract][Full Text] [Related]
10. Sampling rate of heart rate variability impacts the ability to detect acidemia in ovine fetuses near-term. Durosier LD; Green G; Batkin I; Seely AJ; Ross MG; Richardson BS; Frasch MG Front Pediatr; 2014; 2():38. PubMed ID: 24829897 [TBL] [Abstract][Full Text] [Related]
12. Is intrapartum vibroacoustic stimulation an effective predictor of fetal acidosis? Lin CC; Vassallo B; Mittendorf R J Perinat Med; 2001; 29(6):506-12. PubMed ID: 11776681 [TBL] [Abstract][Full Text] [Related]
13. Toward the improvement in fetal monitoring during labor with the inclusion of maternal heart rate analysis. Gonçalves H; Pinto P; Silva M; Ayres-de-Campos D; Bernardes J Med Biol Eng Comput; 2016 Apr; 54(4):691-9. PubMed ID: 26219610 [TBL] [Abstract][Full Text] [Related]
14. Are we (mis)guided by current guidelines on intrapartum fetal heart rate monitoring? Case for a more physiological approach to interpretation. Ugwumadu A BJOG; 2014 Aug; 121(9):1063-70. PubMed ID: 24920154 [TBL] [Abstract][Full Text] [Related]
15. Acceleration and deceleration capacity of fetal heart rate in an in-vivo sheep model. Rivolta MW; Stampalija T; Casati D; Richardson BS; Ross MG; Frasch MG; Bauer A; Ferrazzi E; Sassi R PLoS One; 2014; 9(8):e104193. PubMed ID: 25141131 [TBL] [Abstract][Full Text] [Related]
16. Mathematical Model of Cardiovascular and Metabolic Responses to Umbilical Cord Occlusions in Fetal Sheep. Wang Q; Gold N; Frasch MG; Huang H; Thiriet M; Wang X Bull Math Biol; 2015 Dec; 77(12):2264-93. PubMed ID: 26582358 [TBL] [Abstract][Full Text] [Related]
17. Adaptive brain shut-down counteracts neuroinflammation in the near-term ovine fetus. Xu A; Durosier LD; Ross MG; Hammond R; Richardson BS; Frasch MG Front Neurol; 2014; 5():110. PubMed ID: 25071698 [TBL] [Abstract][Full Text] [Related]
18. Fetal acidemia and electronic fetal heart rate patterns: is there evidence of an association? Parer JT; King T; Flanders S; Fox M; Kilpatrick SJ J Matern Fetal Neonatal Med; 2006 May; 19(5):289-94. PubMed ID: 16753769 [TBL] [Abstract][Full Text] [Related]
19. Comparison of intrapartum electronic fetal heart rate monitoring versus intermittent auscultation in detecting fetal acidemia at birth. Vintzileos AM; Nochimson DJ; Antsaklis A; Varvarigos I; Guzman ER; Knuppel RA Am J Obstet Gynecol; 1995 Oct; 173(4):1021-4. PubMed ID: 7485287 [TBL] [Abstract][Full Text] [Related]
20. A prospective cohort study of fetal heart rate monitoring: deceleration area is predictive of fetal acidemia. Cahill AG; Tuuli MG; Stout MJ; López JD; Macones GA Am J Obstet Gynecol; 2018 May; 218(5):523.e1-523.e12. PubMed ID: 29408586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]