These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21789319)

  • 1. Thermal annealing of SiC nanoparticles induces SWNT nucleation: evidence for a catalyst-independent VSS mechanism.
    Page AJ; Chandrakumar KR; Irle S; Morokuma K
    Phys Chem Chem Phys; 2011 Sep; 13(34):15673-80. PubMed ID: 21789319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism.
    Page AJ; Chandrakumar KR; Irle S; Morokuma K
    J Am Chem Soc; 2011 Jan; 133(3):621-8. PubMed ID: 21142071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles.
    Page AJ; Yamane H; Ohta Y; Irle S; Morokuma K
    J Am Chem Soc; 2010 Nov; 132(44):15699-707. PubMed ID: 20961094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.
    Ohta Y; Okamoto Y; Page AJ; Irle S; Morokuma K
    ACS Nano; 2009 Nov; 3(11):3413-20. PubMed ID: 19827761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supported-nanoparticle heterogeneous catalyst formation in contact with solution: kinetics and proposed mechanism for the conversion of Ir(1,5-COD)Cl/γ-Al2O3 to Ir(0)(~900)/γ-Al2O3.
    Mondloch JE; Finke RG
    J Am Chem Soc; 2011 May; 133(20):7744-56. PubMed ID: 21526773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.
    Ding F; Rosén A; Bolton K
    J Chem Phys; 2004 Aug; 121(6):2775-9. PubMed ID: 15281881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal physics in carbon nanotube growth kinetics.
    Louchev OA; Kanda H; Rosén A; Bolton K
    J Chem Phys; 2004 Jul; 121(1):446-56. PubMed ID: 15260566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Chemical Simulation of Carbon Nanotube Nucleation on Al2O3 Catalysts via CH4 Chemical Vapor Deposition.
    Page AJ; Saha S; Li HB; Irle S; Morokuma K
    J Am Chem Soc; 2015 Jul; 137(29):9281-8. PubMed ID: 26148208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic nucleation and growth mechanism for single-wall carbon nanotubes on catalytic nanoparticle surfaces.
    Wang JT; Chen C; Ohno K; Wang E; Chen XL; Wang DS; Mizuseki H; Kawazoe Y
    Nanotechnology; 2010 Mar; 21(11):115602. PubMed ID: 20173247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth.
    He M; Amara H; Jiang H; Hassinen J; Bichara C; Ras RH; Lehtonen J; Kauppinen EI; Loiseau A
    Nanoscale; 2015 Dec; 7(47):20284-9. PubMed ID: 26580292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks.
    Day TM; Unwin PR; Wilson NR; Macpherson JV
    J Am Chem Soc; 2005 Aug; 127(30):10639-47. PubMed ID: 16045351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotube nucleation versus carbon-catalyst adhesion--probed by molecular dynamics simulations.
    Ribas MA; Ding F; Balbuena PB; Yakobson BI
    J Chem Phys; 2009 Dec; 131(22):224501. PubMed ID: 20001051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations.
    Ohta Y; Okamoto Y; Irle S; Morokuma K
    ACS Nano; 2008 Jul; 2(7):1437-44. PubMed ID: 19206312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystalline Ni3C as both carbon source and catalyst for graphene nucleation: a QM/MD study.
    Jiao M; Li K; Guan W; Wang Y; Wu Z; Page A; Morokuma K
    Sci Rep; 2015 Jul; 5():12091. PubMed ID: 26169042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The key role of hydrogen in the growth of SiC/SiO(2) nanocables.
    López-Camacho E; Fernández M; Gómez-Aleixandre C
    Nanotechnology; 2008 Jul; 19(30):305602. PubMed ID: 21828764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth mechanism of single-walled carbon nanotube from catalytic reaction inside carbon nanotube template.
    Izu Y; Shiomi J; Takagi Y; Okada S; Maruyama S
    ACS Nano; 2010 Aug; 4(8):4769-75. PubMed ID: 20731452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Catalysts for Chirality-Selective Synthesis of Single-Walled Carbon Nanotubes: Past Success and Future Opportunity.
    He M; Zhang S; Wu Q; Xue H; Xin B; Wang D; Zhang J
    Adv Mater; 2019 Mar; 31(9):e1800805. PubMed ID: 30160811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.