BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 21789335)

  • 1. A microfluidic device for performing pressure-driven separations.
    Dutta D; Ramsey JM
    Lab Chip; 2011 Sep; 11(18):3081-8. PubMed ID: 21789335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure generation at the junction of two microchannels with different depths.
    Yanagisawa N; Dutta D
    Electrophoresis; 2010 Jun; 31(12):2080-8. PubMed ID: 20503204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium silicate based sol-gel structures for generating pressure-driven flow in microfluidic channels.
    Toh GM; Corcoran RC; Dutta D
    J Chromatogr A; 2010 Jul; 1217(30):5004-11. PubMed ID: 20554290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow.
    Johann R; Renaud P
    Electrophoresis; 2004 Nov; 25(21-22):3720-9. PubMed ID: 15565695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices.
    Chakraborty J; Ray S; Chakraborty S
    Electrophoresis; 2012 Feb; 33(3):419-25. PubMed ID: 22212910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced hydraulic pumping via integrated submicrometer cylindrical glass capillaries.
    Cao Z; Yobas L
    Electrophoresis; 2014 Aug; 35(16):2353-60. PubMed ID: 24917552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.
    Gong M; Bohn PW; Sweedler JV
    Anal Chem; 2009 Mar; 81(5):2022-6. PubMed ID: 19182940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchip-Based Electrophoretic Separations with a Pressure-Driven Backflow.
    Xia L; Dutta D
    Methods Mol Biol; 2019; 1906():239-249. PubMed ID: 30488397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces.
    Salim M; Wright PC; McArthur SL
    Electrophoresis; 2009 Jun; 30(11):1877-87. PubMed ID: 19517430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical studies of continuous nutrient delivery for tumour spheroid culture in a microchannel by electrokinetically-induced pressure-driven flow.
    Movahed S; Li D
    Biomed Microdevices; 2010 Dec; 12(6):1061-72. PubMed ID: 20689992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method.
    Li C; Yang Y; Craighead HG; Lee KH
    Electrophoresis; 2005 May; 26(9):1800-6. PubMed ID: 15800962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.
    Hua Y; Jemere AB; Dragoljic J; Harrison DJ
    Lab Chip; 2013 Jul; 13(13):2651-9. PubMed ID: 23712291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubble-free electrokinetic flow with propylene carbonate.
    Sritharan D; Chen AS; Aluthgama P; Naved B; Smela E
    Electrophoresis; 2015 Oct; 36(20):2622-9. PubMed ID: 26178406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.