These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21790023)

  • 41. An essential role of active site arginine residue in iodide binding and histidine residue in electron transfer for iodide oxidation by horseradish peroxidase.
    Adak S; Bandyopadhyay D; Bandyopadhyay U; Banerjee RK
    Mol Cell Biochem; 2001 Feb; 218(1-2):1-11. PubMed ID: 11330823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of the catalytically important histidine of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
    Darnay BG; Wang Y; Rodwell VW
    J Biol Chem; 1992 Jul; 267(21):15064-70. PubMed ID: 1634543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The effect of the carbohydrate components of pea roots on the enzymatic activity of the surface agglutinins of Rhizobium leguminosarum bv. viciae 252].
    Karpunina LV; Smiian MS; Kosenko LV
    Mikrobiologiia; 2004; 73(4):461-4. PubMed ID: 15521170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Substrate-decreased modification by diethyl pyrocarbonate of two histidines in isocitrate lyase from Escherichia coli.
    Ko YH; Vanni P; Munske GR; McFadden BA
    Biochemistry; 1991 Jul; 30(30):7451-6. PubMed ID: 1854747
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytically important domains of rat carnitine palmitoyltransferase II as determined by site-directed mutagenesis and chemical modification. Evidence for a critical histidine residue.
    Brown NF; Anderson RC; Caplan SL; Foster DW; McGarry JD
    J Biol Chem; 1994 Jul; 269(29):19157-62. PubMed ID: 8034673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic and mutagenic evidence for the role of histidine residues in the Lycopersicon esculentum 1-aminocyclopropane-1-carboxylic acid oxidase.
    Tayeh MA; Howe DL; Salleh HM; Sheflyan GY; Son JK; Woodard RW
    J Protein Chem; 1999 Jan; 18(1):55-68. PubMed ID: 10071929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of imidazole inhibition of a GH1 β-glucosidase.
    Chagas RS; Otsuka FAM; Pineda MAR; Salinas RK; Marana SR
    FEBS Open Bio; 2023 May; 13(5):912-925. PubMed ID: 36906930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active-site characterization of S1 nuclease. II. Involvement of histidine in catalysis.
    Gite S; Reddy G; Shankar V
    Biochem J; 1992 Dec; 288 ( Pt 2)(Pt 2):571-5. PubMed ID: 1463460
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active site histidine in spinach ribulosebisphosphate carboxylase/oxygenase modified by diethyl pyrocarbonate.
    Igarashi Y; McFadden BA; el-Gul T
    Biochemistry; 1985 Jul; 24(15):3957-62. PubMed ID: 4052379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical modification of essential histidine residues in aspartase with diethylpyrocarbonate.
    Ida N; Tokushige M
    J Biochem; 1984 Nov; 96(5):1315-21. PubMed ID: 6396297
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase.
    Lukacin R; Britsch L
    Eur J Biochem; 1997 Nov; 249(3):748-57. PubMed ID: 9395322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Histidine residues 139, 363 and 500 are essential for catalytic activity of cofactor-independent phosphoglyceromutase from developing endosperm of the castor plant.
    Huang Y; Dennis DT
    Eur J Biochem; 1995 Apr; 229(2):395-402. PubMed ID: 7744062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of catalytically active groups of Penicillium canescens F-436 beta-galactosidase.
    Korneeva OS; Zherebtsov NA; Cheryomushkina IV
    Biochemistry (Mosc); 2001 Mar; 66(3):334-9. PubMed ID: 11333160
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Inactivated pea flour (Pisum sativum) in bread making].
    Alasino MC; Andrich OD; Sabbag NG; Costa SC; de la Torre MA; Sánchez HD
    Arch Latinoam Nutr; 2008 Dec; 58(4):397-402. PubMed ID: 19368302
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A beta-galactosidase from pea seeds (PsBGAL): purification, stabilization, catalytic energetics, conformational heterogeneity, and its significance.
    Dwevedi A; Kayastha AM
    J Agric Food Chem; 2009 Aug; 57(15):7086-96. PubMed ID: 19552429
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of essential ionizable groups and evaluation of subsite affinities in the active site of beta-D-glucosidase F1 from a Streptomyces sp.
    Fukuda K; Mori H; Okuyama M; Kimura A; Ozaki H; Yoneyama M; Chiba S
    Biosci Biotechnol Biochem; 2002 Oct; 66(10):2060-7. PubMed ID: 12450115
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Essential histidine residues in dextransucrase: chemical modification by diethyl pyrocarbonate and dye photo-oxidation.
    Fu D; Robyt JF
    Carbohydr Res; 1988 Nov; 183(1):97-109. PubMed ID: 2466564
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enthalpy and enzyme activity of modified histidine residues of adenosine deaminase and diethyl pyrocarbonate complexes.
    Ataie G; Moosavi-Movahedi AA; Saboury AA; Hakimelahi GH; Hwu JR; Tsay SC
    Int J Biol Macromol; 2000 Mar; 27(1):29-33. PubMed ID: 10704983
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical modification of prostaglandin H synthase with diethyl pyrocarbonate.
    Zhang X; Tsai AL; Kulmacz RJ
    Biochemistry; 1992 Mar; 31(9):2528-38. PubMed ID: 1312350
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical modification of chalcone isomerase by diethyl pyrocarbonate: histidine residues are not essential for catalysis.
    Bednar RA; Adeniran AJ
    Arch Biochem Biophys; 1990 Nov; 282(2):393-8. PubMed ID: 2241159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.