These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21790050)

  • 21. Treatment of metal-contaminated water and vertical distribution of metal precipitates in an upflow anaerobic bioreactor.
    Quan ZX; La HJ; Cho YG; Hwang MH; Kim LS; Lee ST
    Environ Technol; 2003 Mar; 24(3):369-76. PubMed ID: 12703862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of heavy metal ions from wastewaters: a review.
    Fu F; Wang Q
    J Environ Manage; 2011 Mar; 92(3):407-18. PubMed ID: 21138785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amidoxime functionalized PVDF-based chelating membranes enable synchronous elimination of heavy metals and organic contaminants from wastewater.
    Gao Q; Tao D; Qi Z; Liu Y; Guo J; Yu Y
    J Environ Manage; 2022 Sep; 318():115643. PubMed ID: 35949092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent.
    Aklil A; Mouflih M; Sebti S
    J Hazard Mater; 2004 Aug; 112(3):183-90. PubMed ID: 15302439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite.
    Wu P; Wu W; Li S; Xing N; Zhu N; Li P; Wu J; Yang C; Dang Z
    J Hazard Mater; 2009 Sep; 169(1-3):824-30. PubMed ID: 19443105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.
    Jones BO; John OO; Luke C; Ochieng A; Bassey BJ
    J Environ Manage; 2016 Jul; 177():365-72. PubMed ID: 27150318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY; Chen WH; Shih CJ
    Water Sci Technol; 2008; 58(10):1947-54. PubMed ID: 19039174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A study on removal characteristics of heavy metals from aqueous solution by fly ash.
    Cho H; Oh D; Kim K
    J Hazard Mater; 2005 Dec; 127(1-3):187-95. PubMed ID: 16125307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals.
    Rehman A; Shakoori FR; Shakoori AR
    Bioresour Technol; 2008 Jun; 99(9):3890-5. PubMed ID: 17888657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of divalent heavy metal mixtures from water by Saccharomyces cerevisiae using crossflow microfiltration.
    Bayhan YK; Keskinler B; Cakici A; Levent M; Akay G
    Water Res; 2001 Jun; 35(9):2191-200. PubMed ID: 11358298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Extraction of Heavy Metals from Sludge Using Biodegradable Chelating Agent N,N-bis(carboxymethyl) Glutamic Acid Tetrasodium].
    Wu Q; Cui YR; Tang XX; Yang HJ; Sun JH
    Huan Jing Ke Xue; 2015 May; 36(5):1733-8. PubMed ID: 26314124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different options for metal recovery after sludge decontamination at the Montreal Urban Community wastewater treatment plant.
    Meunier N; Blais JF; Lounès M; Tyagi RD; Sasseville JL
    Water Sci Technol; 2002; 46(10):33-41. PubMed ID: 12479450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the treatment of wastewater containing mercury by macromolecular heavy metal flocculant mercaptoacetyl polyethyleneimine.
    Min X; Qing C; Jinjin C
    Water Environ Res; 2010; 82(9):790-6. PubMed ID: 20942334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration.
    Huang J; Yuan F; Zeng G; Li X; Gu Y; Shi L; Liu W; Shi Y
    Chemosphere; 2017 Apr; 173():199-206. PubMed ID: 28110009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple method for removing chelated copper from wastewaters: Ca(OH)(2)-based replacement-precipitation.
    Jiang S; Fu F; Qu J; Xiong Y
    Chemosphere; 2008 Oct; 73(5):785-90. PubMed ID: 18653210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia.
    Pehlivan E; Arslan G
    J Hazard Mater; 2006 Nov; 138(2):401-8. PubMed ID: 16962233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Removal of metal ions Cu2+, Cd+ and Pb+ from solutions by sorption on slag].
    Chen X; Hou WH; Wang QH
    Huan Jing Ke Xue; 2009 Oct; 30(10):2940-5. PubMed ID: 19968111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Crosslinked carboxymethyl konjac glucomannan microcolumn preconcentration of trace lead, cadmium and copper in water samples and determination by graphite furnace atomic absorption spectrometry].
    Chen H; Shen M; Xue AF; Li SQ; Pan SY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1422-6. PubMed ID: 19650505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel.
    Liang S; Guo X; Feng N; Tian Q
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):10-4. PubMed ID: 19477102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA.
    Wu Q; Cui Y; Li Q; Sun J
    J Hazard Mater; 2015; 283():748-54. PubMed ID: 25464318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.