These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21790183)

  • 1. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase.
    Mecinović J; Snyder PW; Mirica KA; Bai S; Mack ET; Kwant RL; Moustakas DT; Héroux A; Whitesides GM
    J Am Chem Soc; 2011 Sep; 133(35):14017-26. PubMed ID: 21790183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic parameters for the association of fluorinated benzenesulfonamides with bovine carbonic anhydrase II.
    Krishnamurthy VM; Bohall BR; Kim CY; Moustakas DT; Christianson DW; Whitesides GM
    Chem Asian J; 2007 Jan; 2(1):94-105. PubMed ID: 17441142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-Restructuring Mutations Can Reverse the Thermodynamic Signature of Ligand Binding to Human Carbonic Anhydrase.
    Fox JM; Kang K; Sastry M; Sherman W; Sankaran B; Zwart PH; Whitesides GM
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):3833-3837. PubMed ID: 28252841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing binding constants of ligands to carbonic anhydrase by using "greasy tails".
    Gao J; Qiao S; Whitesides GM
    J Med Chem; 1995 Jun; 38(13):2292-301. PubMed ID: 7608894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Varying Fluorination Patterns on the Thermodynamics and Kinetics of Benzenesulfonamide Binding to Human Carbonic Anhydrase II.
    Glöckner S; Ngo K; Wagner B; Heine A; Klebe G
    Biomolecules; 2020 Mar; 10(4):. PubMed ID: 32230853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational Changes in Alkyl Chains Determine the Thermodynamic and Kinetic Binding Profiles of Carbonic Anhydrase Inhibitors.
    Glöckner S; Ngo K; Sager CP; Hüfner-Wulsdorf T; Heine A; Klebe G
    ACS Chem Biol; 2020 Mar; 15(3):675-685. PubMed ID: 32027480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase.
    Snyder PW; Mecinovic J; Moustakas DT; Thomas SW; Harder M; Mack ET; Lockett MR; Héroux A; Sherman W; Whitesides GM
    Proc Natl Acad Sci U S A; 2011 Nov; 108(44):17889-94. PubMed ID: 22011572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residual ligand entropy in the binding of p-substituted benzenesulfonamide ligands to bovine carbonic anhydrase II.
    Stöckmann H; Bronowska A; Syme NR; Thompson GS; Kalverda AP; Warriner SL; Homans SW
    J Am Chem Soc; 2008 Sep; 130(37):12420-6. PubMed ID: 18717559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonic anhydrase inhibitors: stacking with Phe131 determines active site binding region of inhibitors as exemplified by the X-ray crystal structure of a membrane-impermeant antitumor sulfonamide complexed with isozyme II.
    Menchise V; De Simone G; Alterio V; Di Fiore A; Pedone C; Scozzafava A; Supuran CT
    J Med Chem; 2005 Sep; 48(18):5721-7. PubMed ID: 16134940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and Structural Insights into the Mechanism of Binding of Sulfonamides to Human Carbonic Anhydrase by Computational and Experimental Studies.
    Gaspari R; Rechlin C; Heine A; Bottegoni G; Rocchia W; Schwarz D; Bomke J; Gerber HD; Klebe G; Cavalli A
    J Med Chem; 2016 May; 59(9):4245-56. PubMed ID: 26700575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding affinity of substituted ureido-benzenesulfonamide ligands to the carbonic anhydrase receptor: a theoretical study of enzyme inhibition.
    Sahu C; Sen K; Pakhira S; Mondal B; Das AK
    J Comput Chem; 2013 Aug; 34(22):1907-16. PubMed ID: 23712937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonic anhydrase inhibitors: Valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II "selective" inhibitor celecoxib.
    Di Fiore A; Pedone C; D'Ambrosio K; Scozzafava A; De Simone G; Supuran CT
    Bioorg Med Chem Lett; 2006 Jan; 16(2):437-42. PubMed ID: 16290146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonic anhydrase inhibitors: X-ray and molecular modeling study for the interaction of a fluorescent antitumor sulfonamide with isozyme II and IX.
    Alterio V; Vitale RM; Monti SM; Pedone C; Scozzafava A; Cecchi A; De Simone G; Supuran CT
    J Am Chem Soc; 2006 Jun; 128(25):8329-35. PubMed ID: 16787097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic substituents of the phenylmethylsulfamide moiety can be used for the development of new selective carbonic anhydrase inhibitors.
    De Simone G; Pizika G; Monti SM; Di Fiore A; Ivanova J; Vozny I; Trapencieris P; Zalubovskis R; Supuran CT; Alterio V
    Biomed Res Int; 2014; 2014():523210. PubMed ID: 25258712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonic anhydrase inhibitors: X-ray crystal structure of a benzenesulfonamide strong CA II and CA IX inhibitor bearing a pentafluorophenylaminothioureido tail in complex with isozyme II.
    Di Fiore A; De Simone G; Menchise V; Pedone C; Casini A; Scozzafava A; Supuran CT
    Bioorg Med Chem Lett; 2005 Apr; 15(7):1937-42. PubMed ID: 15780637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-induced protein mobility in complexes of carbonic anhydrase II and benzenesulfonamides with oligoglycine chains.
    Krishnamurthy VM; Raman VS; Mowery RA; Hentz M; Baleja JD; Shaw BF; Kumar K
    PLoS One; 2013; 8(3):e57629. PubMed ID: 23472094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry.
    Zubrienė A; Smirnovienė J; Smirnov A; Morkūnaitė V; Michailovienė V; Jachno J; Juozapaitienė V; Norvaišas P; Manakova E; Gražulis S; Matulis D
    Biophys Chem; 2015 Oct; 205():51-65. PubMed ID: 26079542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining the Fragment Molecular Orbital and GRID Approaches for the Prediction of Ligand-Metalloenzyme Binding Affinity: The Case Study of hCA II Inhibitors.
    Paciotti R; Re N; Storchi L
    Molecules; 2024 Jul; 29(15):. PubMed ID: 39125005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The paradoxical thermodynamic basis for the interaction of ethylene glycol, glycine, and sarcosine chains with bovine carbonic anhydrase II: an unexpected manifestation of enthalpy/entropy compensation.
    Krishnamurthy VM; Bohall BR; Semetey V; Whitesides GM
    J Am Chem Soc; 2006 May; 128(17):5802-12. PubMed ID: 16637649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying how different terminal groups change the motion of H2NSO2C6H4CONH(EG)3R when bound to the active site of human carbonic anhydrase II.
    Chin DN; Lau AY; Whitesides GM
    J Org Chem; 1998 Feb; 63(4):938-45. PubMed ID: 14994755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.