These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21790186)

  • 1. Elucidation of the thermal deterioration mechanism of bio-oil pyrolyzed from rice husk using Fourier transform infrared spectroscopy.
    Xu F; Xu Y; Lu R; Sheng GP; Yu HQ
    J Agric Food Chem; 2011 Sep; 59(17):9243-9. PubMed ID: 21790186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.
    Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T
    Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic hydrothermal upgradation of wheat husk.
    Singh R; Bhaskar T; Dora S; Balagurumurthy B
    Bioresour Technol; 2013 Dec; 149():446-51. PubMed ID: 24140848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions.
    Bordoloi N; Narzari R; Chutia RS; Bhaskar T; Kataki R
    Bioresour Technol; 2015 Feb; 178():83-89. PubMed ID: 25453438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous-phase reforming of the low-boiling fraction of rice husk pyrolyzed bio-oil in the presence of platinum catalyst for hydrogen production.
    Pan C; Chen A; Liu Z; Chen P; Lou H; Zheng X
    Bioresour Technol; 2012 Dec; 125():335-9. PubMed ID: 23069602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal deterioration of virgin olive oil monitored by ATR-FTIR analysis of trans content.
    Tena N; Aparicio R; García-González DL
    J Agric Food Chem; 2009 Nov; 57(21):9997-10003. PubMed ID: 19817451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC-MS) techniques.
    Sugumaran V; Prakash S; Ramu E; Arora AK; Bansal V; Kagdiyal V; Saxena D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jul; 1058():47-56. PubMed ID: 28535422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.
    Gong F; Yang Z; Hong C; Huang W; Ning S; Zhang Z; Xu Y; Li Q
    Bioresour Technol; 2011 Oct; 102(19):9247-54. PubMed ID: 21807503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic study of olive oil degradation monitored by fourier transform infrared spectrometry. Application to oil characterization.
    Román Falcó IP; Grané Teruel N; Prats Moya S; Martín Carratalá ML
    J Agric Food Chem; 2012 Nov; 60(47):11800-10. PubMed ID: 23137053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of quality and stability characteristics and fatty acid compositions of refined olive and seed oils during repeated pan- and deep-frying using GC, FT-NIRS, and chemometrics.
    Zribi A; Jabeur H; Aladedunye F; Rebai A; Matthäus B; Bouaziz M
    J Agric Food Chem; 2014 Oct; 62(42):10357-67. PubMed ID: 25264922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis.
    Islam MR; Parveen M; Haniu H
    Bioresour Technol; 2010 Jun; 101(11):4162-8. PubMed ID: 20133132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.
    Ben Hassen-Trabelsi A; Kraiem T; Naoui S; Belayouni H
    Waste Manag; 2014 Jan; 34(1):210-8. PubMed ID: 24129214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis of mangaba seed: production and characterization of bio-oil.
    Santos RM; Santos AO; Sussuchi EM; Nascimento JS; Lima ÁS; Freitas LS
    Bioresour Technol; 2015 Nov; 196():43-8. PubMed ID: 26226580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis of sal seed to liquid product.
    Singh VK; Soni AB; Kumar S; Singh RK
    Bioresour Technol; 2014 Jan; 151():432-5. PubMed ID: 24268507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of carbonyl value of frying oil by fourier transform infrared spectroscopy.
    Zhang H; Ma J; Miao Y; Tuchiya T; Chen JY
    J Oleo Sci; 2015; 64(4):375-80. PubMed ID: 25766931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the liquid product obtained by pyrolysis of karanja seed.
    Nayan NK; Kumar S; Singh RK
    Bioresour Technol; 2012 Nov; 124():186-9. PubMed ID: 22989645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments.
    Balagurumurthy B; Srivastava V; Vinit ; Kumar J; Biswas B; Singh R; Gupta P; Kumar KL; Singh R; Bhaskar T
    Bioresour Technol; 2015; 188():273-9. PubMed ID: 25637279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of primary and secondary oxidation products by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (NMR) in sunflower oil during storage.
    Guillén MD; Goicoechea E
    J Agric Food Chem; 2007 Dec; 55(26):10729-36. PubMed ID: 18038977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new direct Fourier transform infrared analysis of free fatty acids in edible oils using spectral reconstitution.
    Yu X; van de Voort FR; Sedman J; Gao JM
    Anal Bioanal Chem; 2011 Jul; 401(1):315-24. PubMed ID: 21556753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of vibrational spectroscopic techniques for determination of thermal degradation of frying oils and fats: a review.
    Meenu M; Decker EA; Xu B
    Crit Rev Food Sci Nutr; 2022; 62(21):5744-5765. PubMed ID: 33645344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.