These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21790187)

  • 1. Electrothermal dynamics of semiconductor nanowires under local carrier modulation.
    Fu D; Zou J; Wang K; Zhang R; Yu D; Wu J
    Nano Lett; 2011 Sep; 11(9):3809-15. PubMed ID: 21790187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of graded-composition and graded-doping semiconductor nanowires under local carrier modulation.
    Deng W; Zou J; Peng X; Zhang J; Wang W; Zhang Y; Zhang D
    Opt Express; 2016 Oct; 24(21):24347-24360. PubMed ID: 27828165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Analytic Formula for Minority Carrier Decay Length Extraction from Scanning Photocurrent Profiles in Ohmic-Contact Nanowire Devices.
    Chu CH; Mao MH; Yang CW; Lin HH
    Sci Rep; 2019 Jul; 9(1):9426. PubMed ID: 31263209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing charge carrier trapping in silicon nanowires using picosecond conductivity measurements.
    Ulbricht R; Kurstjens R; Bonn M
    Nano Lett; 2012 Jul; 12(7):3821-7. PubMed ID: 22738182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Barrier height measurement of metal contacts to Si nanowires using internal photoemission of hot carriers.
    Yoon K; Hyun JK; Connell JG; Amit I; Rosenwaks Y; Lauhon LJ
    Nano Lett; 2013; 13(12):6183-8. PubMed ID: 24224834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy.
    Gabriel MM; Kirschbrown JR; Christesen JD; Pinion CW; Zigler DF; Grumstrup EM; Mehl BP; Cating EE; Cahoon JF; Papanikolas JM
    Nano Lett; 2013 Mar; 13(3):1336-40. PubMed ID: 23421654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-long distance carrier transportation in bandgap-graded CdS
    Fan P; Liu H; Zhuang X; Zheng W; Ge C; Huang W; Yang X; Liu Y; Jiang Y; Zhu X; Pan A
    Nanoscale; 2019 Apr; 11(17):8494-8501. PubMed ID: 30990510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semimetal to semiconductor transition and polymer electrolyte gate modulation in single-crystalline bismuth nanowires.
    Kim J; Lee W
    Nanoscale; 2017 Jan; 9(2):923-929. PubMed ID: 28000830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of charge-carrier heating at WZ-ZB InP nanowire heterojunctions.
    Yong CK; Wong-Leung J; Joyce HJ; Lloyd-Hughes J; Gao Q; Tan HH; Jagadish C; Johnston MB; Herz LM
    Nano Lett; 2013 Sep; 13(9):4280-7. PubMed ID: 23919626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p-n junctions.
    Mohite AD; Perea DE; Singh S; Dayeh SA; Campbell IH; Picraux ST; Htoon H
    Nano Lett; 2012 Apr; 12(4):1965-71. PubMed ID: 22432793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long minority carrier diffusion lengths in bridged silicon nanowires.
    Triplett M; Yang Y; Léonard F; Talin AA; Islam MS; Yu D
    Nano Lett; 2015 Jan; 15(1):523-9. PubMed ID: 25541642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires.
    Léonard F; Song E; Li Q; Swartzentruber B; Martinez JA; Wang GT
    Nano Lett; 2015 Dec; 15(12):8129-35. PubMed ID: 26529491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Space Visualization of Energy Loss and Carrier Diffusion in a Semiconductor Nanowire Array Using 4D Electron Microscopy.
    Bose R; Sun J; Khan JI; Shaheen BS; Adhikari A; Ng TK; Burlakov VM; Parida MR; Priante D; Goriely A; Ooi BS; Bakr OM; Mohammed OF
    Adv Mater; 2016 Jul; 28(25):5106-11. PubMed ID: 27111855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping.
    Xia H; Lu ZY; Li TX; Parkinson P; Liao ZM; Liu FH; Lu W; Hu WD; Chen PP; Xu HY; Zou J; Jagadish C
    ACS Nano; 2012 Jul; 6(7):6005-13. PubMed ID: 22724925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires.
    Prechtel L; Padilla M; Erhard N; Karl H; Abstreiter G; Fontcuberta I Morral A; Holleitner AW
    Nano Lett; 2012 May; 12(5):2337-41. PubMed ID: 22494021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect Manipulation To Control ZnO Micro-/Nanowire-Metal Contacts.
    Cox JW; Foster GM; Jarjour A; von Wenckstern H; Grundmann M; Brillson LJ
    Nano Lett; 2018 Nov; 18(11):6974-6980. PubMed ID: 30384614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier density distribution in silicon nanowires investigated by scanning thermal microscopy and Kelvin probe force microscopy.
    Wielgoszewski G; Pałetko P; Tomaszewski D; Zaborowski M; Jóźwiak G; Kopiec D; Gotszalk T; Grabiec P
    Micron; 2015 Dec; 79():93-100. PubMed ID: 26381074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compositional disorder and its effect on the thermoelectric performance of Zn₃P₂ nanowire-copper nanoparticle composites.
    Brockway L; Vasiraju V; Vaddiraju S
    Nanotechnology; 2014 Mar; 25(12):125402. PubMed ID: 24577096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially Resolved Carrier Dynamics at MAPbBr
    Ahmadi M; Collins L; Higgins K; Kim D; Lukosi E; Kalinin SV
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41551-41560. PubMed ID: 31595742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.