These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21790202)

  • 1. Characteristic chain-end racemization behavior during photolysis of poly(L-lactic acid).
    Yasuda N; Tsukegi T; Shirai Y; Nishida H
    Biomacromolecules; 2011 Sep; 12(9):3299-304. PubMed ID: 21790202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new strategy for recycling and preparation of poly(L-lactic acid): hydrolysis in the melt.
    Tsuji H; Daimon H; Fujie K
    Biomacromolecules; 2003; 4(3):835-40. PubMed ID: 12741806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA.
    Loo SC; Tan HT; Ooi CP; Boey YC
    Acta Biomater; 2006 May; 2(3):287-96. PubMed ID: 16701888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal degradation processes of end-capped poly(L-lactide)s in the presence and absence of residual zinc catalyst.
    Abe H; Takahashi N; Kim KJ; Mochizuki M; Doi Y
    Biomacromolecules; 2004; 5(4):1606-14. PubMed ID: 15244485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures.
    Andersson SR; Hakkarainen M; Inkinen S; Södergård A; Albertsson AC
    Biomacromolecules; 2012 Apr; 13(4):1212-22. PubMed ID: 22394150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt.
    Tsuji H; Tezuka Y
    Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid).
    Fukushima K; Chang YH; Kimura Y
    Macromol Biosci; 2007 Jun; 7(6):829-35. PubMed ID: 17541929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed monitoring of the crystallinity change in poly(lactic acid) during photodegradation by using a newly developed wide area NIR imaging system (Compovision).
    Ishikawa D; Furukawa D; Wei TT; Reddy KR; Motomura A; Igarashi Y; Sato H; Kazarian SG; Ozaki Y
    Anal Bioanal Chem; 2015 Jan; 407(2):397-403. PubMed ID: 25326883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of poly(lactic acid) into repolymerizable oligomer using montmorillonite K10 for chemical recycling.
    Okamoto K; Toshima K; Matsumura S
    Macromol Biosci; 2005 Sep; 5(9):813-20. PubMed ID: 16123948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Preparation of ibuprofen/sPEG-b-PLLA copolymer microspheres and its in vitro release properties].
    Lin YL; Zhang AQ; Guan FY; Chen YD; Tan WA; Wang LS
    Yao Xue Xue Bao; 2010 Dec; 45(12):1570-5. PubMed ID: 21351499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers.
    Wang CH; Fan KR; Hsiue GH
    Biomaterials; 2005 Jun; 26(16):2803-11. PubMed ID: 15603776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) fibers.
    Crow BB; Borneman AF; Hawkins DL; Smith GM; Nelson KD
    Tissue Eng; 2005; 11(7-8):1077-84. PubMed ID: 16144443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid).
    Chen GX; Kim HS; Park BH; Yoon JS
    J Phys Chem B; 2005 Dec; 109(47):22237-43. PubMed ID: 16853895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural effects of terminal groups on nonenzymatic and enzymatic degradations of end-capped poly(L-lactide).
    Kurokawa K; Yamashita K; Doi Y; Abe H
    Biomacromolecules; 2008 Mar; 9(3):1071-8. PubMed ID: 18275150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental (IR/Raman and 1H/13C NMR) and theoretical (DFT) studies of the preferential conformations adopted by L-lactic acid oligomers and poly(L-lactic acid) homopolymer.
    Jarmelo S; Marques DA; Simões PN; Carvalho RA; Batista CM; Araujo-Andrade C; Gil MH; Fausto R
    J Phys Chem B; 2012 Jan; 116(1):9-21. PubMed ID: 22082026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation.
    Loo JS; Ooi CP; Boey FY
    Biomaterials; 2005 Apr; 26(12):1359-67. PubMed ID: 15482823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospinning of poly(lactic acid) stereocomplex nanofibers.
    Tsuji H; Nakano M; Hashimoto M; Takashima K; Katsura S; Mizuno A
    Biomacromolecules; 2006 Dec; 7(12):3316-20. PubMed ID: 17154458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters.
    Antheunis H; van der Meer JC; de Geus M; Heise A; Koning CE
    Biomacromolecules; 2010 Apr; 11(4):1118-24. PubMed ID: 20187614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Optical Activity of Poly(L-Lactic Acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes.
    Cataldo F
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.