These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21790313)

  • 21. Neuroendocrine disruption: more than hormones are upset.
    Waye A; Trudeau VL
    J Toxicol Environ Health B Crit Rev; 2011; 14(5-7):270-91. PubMed ID: 21790312
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action.
    Ankley GT; Bencic DC; Breen MS; Collette TW; Conolly RB; Denslow ND; Edwards SW; Ekman DR; Garcia-Reyero N; Jensen KM; Lazorchak JM; Martinović D; Miller DH; Perkins EJ; Orlando EF; Villeneuve DL; Wang RL; Watanabe KH
    Aquat Toxicol; 2009 May; 92(3):168-78. PubMed ID: 19261338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds.
    Ottinger MA; Lavoie E; Thompson N; Barton A; Whitehouse K; Barton M; Abdelnabi M; Quinn M; Panzica G; Viglietti-Panzica C
    Brain Res Rev; 2008 Mar; 57(2):376-85. PubMed ID: 18006066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Environmental endocrine disruptors].
    Iguchi T
    Nihon Rinsho; 1998 Nov; 56(11):2953-62. PubMed ID: 9847627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption.
    Segner H
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Mar; 149(2):187-95. PubMed ID: 18955160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Endocrine disruptors and brain estrogen receptors: the current state of behavioral, neurochemical, and molecular biological studies].
    Takahama K; Shirasaki T
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2001 Oct; 21(4):103-11. PubMed ID: 11769567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perinatal Exposure to Phthalates: From Endocrine to Neurodevelopment Effects.
    Lucaccioni L; Trevisani V; Passini E; Righi B; Plessi C; Predieri B; Iughetti L
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endocrine disruptors and abnormalities of pubertal development.
    Schoeters G; Den Hond E; Dhooge W; van Larebeke N; Leijs M
    Basic Clin Pharmacol Toxicol; 2008 Feb; 102(2):168-75. PubMed ID: 18226071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Corticosterone-regulated actions in the rat brain are affected by perinatal exposure to low dose of bisphenol A.
    Poimenova A; Markaki E; Rahiotis C; Kitraki E
    Neuroscience; 2010 May; 167(3):741-9. PubMed ID: 20219646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of endocrine active compounds on the developing rodent brain.
    Patisaul HB; Polston EK
    Brain Res Rev; 2008 Mar; 57(2):352-62. PubMed ID: 17822772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals.
    Sanderson JT
    Toxicol Sci; 2006 Nov; 94(1):3-21. PubMed ID: 16807284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thyroid hormones promote cell differentiation and up-regulate the expression of the seladin-1 gene in in vitro models of human neuronal precursors.
    Benvenuti S; Luciani P; Cellai I; Deledda C; Baglioni S; Saccardi R; Urbani S; Francini F; Squecco R; Giuliani C; Vannelli GB; Serio M; Pinchera A; Peri A
    J Endocrinol; 2008 May; 197(2):437-46. PubMed ID: 18434374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tryptophan hydroxylase: a target for neuroendocrine disruption.
    Rahman S; Khan IA; Thomas P
    J Toxicol Environ Health B Crit Rev; 2011; 14(5-7):473-94. PubMed ID: 21790322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endocrine disruption in the context of life cycles: perception and transduction of environmental cues.
    Wingfield JC; Mukai M
    Gen Comp Endocrinol; 2009 Sep; 163(1-2):92-6. PubMed ID: 19416728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insights into the endocrine disrupting effects of brominated flame retardants.
    Legler J
    Chemosphere; 2008 Sep; 73(2):216-22. PubMed ID: 18667224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endocrine-related reproductive effects in molluscs.
    Ketata I; Denier X; Hamza-Chaffai A; Minier C
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Apr; 147(3):261-70. PubMed ID: 18282745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. VGF: a novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance.
    Salton SR; Ferri GL; Hahm S; Snyder SE; Wilson AJ; Possenti R; Levi A
    Front Neuroendocrinol; 2000 Jul; 21(3):199-219. PubMed ID: 10882540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular imaging, an innovative methodology for whole-body profiling of endocrine disrupter action.
    Di Lorenzo D; Rando G; Ciana P; Maggi A
    Toxicol Sci; 2008 Dec; 106(2):304-11. PubMed ID: 18794234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Fetal exposure to endocrine disruptors].
    Sakurai K; Mori C
    Nihon Rinsho; 2000 Dec; 58(12):2508-13. PubMed ID: 11187746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression and signal transduction pathways of endothelin receptors in neuroendocrine cells.
    Stojilkovic SS; Catt KJ
    Front Neuroendocrinol; 1996 Jul; 17(3):327-69. PubMed ID: 8812299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.