BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 21791030)

  • 1. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications.
    Jeon JR; Baldrian P; Murugesan K; Chang YS
    Microb Biotechnol; 2012 May; 5(3):318-32. PubMed ID: 21791030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials.
    Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2009 Mar; 82(4):605-24. PubMed ID: 19183983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in laccase-triggered anabolism for biotechnology applications.
    Sun K; Li S; Si Y; Huang Q
    Crit Rev Biotechnol; 2021 Nov; 41(7):969-993. PubMed ID: 33818232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal Laccase-Catalyzed Oxidation of Naturally Occurring Phenols for Enhanced Germination and Salt Tolerance of Arabidopsis thaliana: A Green Route for Synthesizing Humic-like Fertilizers.
    Cha JY; Kim TW; Choi JH; Jang KS; Khaleda L; Kim WY; Jeon JR
    J Agric Food Chem; 2017 Feb; 65(6):1167-1177. PubMed ID: 28112921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical and Pharmaceutical-Related Applications of Laccases.
    Mohit E; Tabarzad M; Faramarzi MA
    Curr Protein Pept Sci; 2020; 21(1):78-98. PubMed ID: 31660814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laccase catalysis for the synthesis of bioactive compounds.
    Kudanga T; Nemadziva B; Le Roes-Hill M
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):13-33. PubMed ID: 27872999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal laccases - occurrence and properties.
    Baldrian P
    FEMS Microbiol Rev; 2006 Mar; 30(2):215-42. PubMed ID: 16472305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering and Applications of fungal laccases for organic synthesis.
    Kunamneni A; Camarero S; García-Burgos C; Plou FJ; Ballesteros A; Alcalde M
    Microb Cell Fact; 2008 Nov; 7():32. PubMed ID: 19019256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications.
    Jeon JR; Chang YS
    Trends Biotechnol; 2013 Jun; 31(6):335-41. PubMed ID: 23639526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifunctional in vivo role of laccase exploited in multiple biotechnological applications.
    Sharma A; Jain KK; Jain A; Kidwai M; Kuhad RC
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10327-10343. PubMed ID: 30406827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications.
    Uzan E; Nousiainen P; Balland V; Sipila J; Piumi F; Navarro D; Asther M; Record E; Lomascolo A
    J Appl Microbiol; 2010 Jun; 108(6):2199-213. PubMed ID: 19968731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra.
    Reiss R; Ihssen J; Richter M; Eichhorn E; Schilling B; Thöny-Meyer L
    PLoS One; 2013; 8(6):e65633. PubMed ID: 23755261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laccases: blue enzymes for green chemistry.
    Riva S
    Trends Biotechnol; 2006 May; 24(5):219-26. PubMed ID: 16574262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of bacterial and fungal laccases with lignin under alkaline conditions.
    Moya R; Saastamoinen P; Hernández M; Suurnäkki A; Arias E; Mattinen ML
    Bioresour Technol; 2011 Nov; 102(21):10006-12. PubMed ID: 21908186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals.
    Javaid R; Sabir A; Sheikh N; Ferhan M
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30813221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laccases: Versatile Biocatalysts for the Synthesis of Heterocyclic Cores.
    Sousa AC; Martins LO; Robalo MP
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass.
    Pardo I; Chanagá X; Vicente AI; Alcalde M; Camarero S
    BMC Biotechnol; 2013 Oct; 13():90. PubMed ID: 24159930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.