BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21791588)

  • 41. Regulation of Choroidal Blood Flow During Isometric Exercise at Different Levels of Intraocular Pressure.
    Popa-Cherecheanu A; Schmidl D; Werkmeister RM; Chua J; Garhöfer G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2019 Jan; 60(1):176-182. PubMed ID: 30640970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of NO in the control of choroidal blood flow during a decrease in ocular perfusion pressure.
    Simader C; Lung S; Weigert G; Kolodjaschna J; Fuchsjäger-Mayrl G; Schmetterer L; Polska E
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):372-7. PubMed ID: 19124845
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Humoral regulation of blood flow to choroid plexus: role of arginine vasopressin.
    Faraci FM; Mayhan WG; Farrell WJ; Heistad DD
    Circ Res; 1988 Aug; 63(2):373-9. PubMed ID: 3396158
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vasopressin impairs brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia.
    Müller S; How OJ; Hermansen SE; Stenberg TA; Sager G; Myrmel T
    Crit Care; 2008; 12(1):R20. PubMed ID: 18291025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regional blood flow changes in response to mildly pressor doses of triglycyl desamino lysine and arginine vasopressin in the conscious dog.
    Moursi MM; van Wylen DG; D'Alecy LG
    J Pharmacol Exp Ther; 1985 Feb; 232(2):360-8. PubMed ID: 3968637
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects on intravascular pressures of vasopressin and angiotensin II in dogs.
    Bie P; Warberg J
    Am J Physiol; 1983 Dec; 245(6):R906-14. PubMed ID: 6362439
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure.
    Polska E; Simader C; Weigert G; Doelemeyer A; Kolodjaschna J; Scharmann O; Schmetterer L
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3768-74. PubMed ID: 17652750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors Associated With Choroidal Blood Flow Regulation in Healthy Young Subjects.
    Schmidl D; Schmetterer L; Witkowska KJ; Rauch A; Werkmeister RM; Garhöfer G; Popa-Cherecheanu A
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5705-5713. PubMed ID: 27787558
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exogenous arginine vasopressin does not enhance carotid baroreflex control in the conscious dog.
    Wolfer RS; Lovell NH; Brunner MJ
    Am J Physiol; 1994 May; 266(5 Pt 2):R1510-6. PubMed ID: 8203628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitric oxide and choroidal blood flow regulation.
    Mann RM; Riva CE; Stone RA; Barnes GE; Cranstoun SD
    Invest Ophthalmol Vis Sci; 1995 Apr; 36(5):925-30. PubMed ID: 7706041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pulmonary vasoregulation by arginine vasopressin in conscious, halothane-anesthetized, and pentobarbital-anesthetized dogs with increased vasomotor tone.
    Trempy GA; Nyhan DP; Murray PA
    Anesthesiology; 1994 Sep; 81(3):632-40. PubMed ID: 8092510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of vasopressin on heart rate in conscious rabbits.
    Elliott JM; West MJ; Chalmers J
    J Cardiovasc Pharmacol; 1985; 7(1):6-11. PubMed ID: 2580152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes in Choroidal Blood Flow and Morphology in Response to Increase in Intraocular Pressure.
    Akahori T; Iwase T; Yamamoto K; Ra E; Terasaki H
    Invest Ophthalmol Vis Sci; 2017 Oct; 58(12):5076-5085. PubMed ID: 28980002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of intravenous cilostazol on optic nerve head and choroidal blood flow in anesthetized cats.
    Suzuki M; Harino S; Kitanishi K
    J Ocul Pharmacol Ther; 1998 Jun; 14(3):239-45. PubMed ID: 9671431
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Renal versus hindquarter hemodynamic responses to vasopressin in conscious rats.
    Harrison-Bernard LM; Brizzee BL; Clifton GG; Walker BR
    J Cardiovasc Pharmacol; 1990 Nov; 16(5):719-26. PubMed ID: 1703592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Short-term effect of beta-adrenoreceptor blocking agents on ocular blood flow.
    Sato T; Muto T; Ishibashi Y; Roy S
    Curr Eye Res; 2001 Oct; 23(4):298-306. PubMed ID: 11852432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of intra-arterial infusion of arginine vasopressin on cochlear blood flow in the rat.
    McLaren GM; Coleman JK; Quirk WS; Dengerink HA; Wright JW
    Hear Res; 1991 Sep; 55(1):1-8. PubMed ID: 1752789
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans.
    Polska E; Ehrlich P; Luksch A; Fuchsjäger-Mayrl G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3110-4. PubMed ID: 12824258
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of latanoprost on choroidal blood flow regulation in healthy subjects.
    Boltz A; Schmidl D; Weigert G; Lasta M; Pemp B; Resch H; Garhöfer G; Fuchsjäger-Mayrl G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4410-5. PubMed ID: 21498617
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intravenous administration of L-arginine increases retinal and choroidal blood flow.
    Garhöfer G; Resch H; Lung S; Weigert G; Schmetterer L
    Am J Ophthalmol; 2005 Jul; 140(1):69-76. PubMed ID: 15953576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.