These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2179206)

  • 1. Effects of nasal CPAP on supraglottic and total pulmonary resistance in preterm infants.
    Miller MJ; DiFiore JM; Strohl KP; Martin RJ
    J Appl Physiol (1985); 1990 Jan; 68(1):141-6. PubMed ID: 2179206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of CO2 rebreathing on pulmonary mechanics in premature infants.
    Miller MJ; DiFiore JM; Strohl KP; Carlo WA; Martin RJ
    J Appl Physiol (1985); 1991 Jun; 70(6):2582-6. PubMed ID: 1909314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in resistance and ventilatory timing that accompany apnea in premature infants.
    Miller MJ; Petrie TG; Difiore JM
    J Appl Physiol (1985); 1993 Aug; 75(2):720-3. PubMed ID: 8226474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics and Consequences of Non-apneic Respiratory Events During Sleep.
    Sankari A; Pranathiageswaran S; Maresh S; Hosni AM; Badr MS
    Sleep; 2017 Jan; 40(1):. PubMed ID: 28364453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in upper airway resistance with lung inflation and positive airway pressure.
    Sériès F; Cormier Y; Couture J; Desmeules M
    J Appl Physiol (1985); 1990 Mar; 68(3):1075-9. PubMed ID: 2187849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nasal continuous positive airway pressure (NCPAP) on breathing pattern in spontaneously breathing premature newborn infants.
    Elgellab A; Riou Y; Abbazine A; Truffert P; Matran R; Lequien P; Storme L
    Intensive Care Med; 2001 Nov; 27(11):1782-7. PubMed ID: 11810123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expiratory pharyngeal airway obstruction during sleep: a multiple element model.
    Woodson BT
    Laryngoscope; 2003 Sep; 113(9):1450-9. PubMed ID: 12972913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of airway resistance in preterm infants during incremental inspiratory flow-resistive loading.
    Duara S; Gerhardt T; Bancalari E
    J Appl Physiol (1985); 1991 Feb; 70(2):889-94. PubMed ID: 2022582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive assessment of respiratory resistance in severe chronic respiratory patients with nasal CPAP.
    Farré R; Gavela E; Rotger M; Ferrer M; Roca J; Navajas D
    Eur Respir J; 2000 Feb; 15(2):314-9. PubMed ID: 10706498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tidal breathing in preterm infants receiving and weaning from continuous positive airway pressure.
    Pickerd N; Williams EM; Watkins WJ; Kotecha S
    J Pediatr; 2014 May; 164(5):1058-1063.e1. PubMed ID: 24518163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway obstruction during periodic breathing in premature infants.
    Miller MJ; Carlo WA; DiFiore JM; Martin RJ
    J Appl Physiol (1985); 1988 Jun; 64(6):2496-500. PubMed ID: 3403433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Effect of Flow and Interface Type on Pressures Delivered With Bubble CPAP in a Simulated Model.
    Bailes SA; Firestone KS; Dunn DK; McNinch NL; Brown MF; Volsko TA
    Respir Care; 2016 Mar; 61(3):333-9. PubMed ID: 26534997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thoracoabdominal motion in newborns during ventilation delivered by endotracheal tube or nasal prongs.
    Kiciman NM; Andréasson B; Bernstein G; Mannino FL; Rich W; Henderson C; Heldt GP
    Pediatr Pulmonol; 1998 Mar; 25(3):175-81. PubMed ID: 9556009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of condensate in the exhalation limb of neonatal circuits on airway pressure during bubble CPAP.
    Youngquist TM; Richardson CP; Diblasi RM
    Respir Care; 2013 Nov; 58(11):1840-6. PubMed ID: 23481441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrathoracic airway stability during resistive loading in preterm infants.
    Duara S; Gerhardt T; Bancalari E
    J Appl Physiol (1985); 1987 Oct; 63(4):1539-43. PubMed ID: 3693192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of unilateral nasal occlusion on ventilation and pulmonary resistance in infants.
    Martin RJ; Miller MJ; Siner B; DiFiore JM; Carlo WA
    J Appl Physiol (1985); 1989 Jun; 66(6):2522-6. PubMed ID: 2745314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharyngeal resistance in normal humans: influence of gender, age, and obesity.
    White DP; Lombard RM; Cadieux RJ; Zwillich CW
    J Appl Physiol (1985); 1985 Feb; 58(2):365-71. PubMed ID: 3980345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous positive airway pressure via a single nasal catheter in preterm infants.
    Field D; Vyas H; Milner AD; Hopkin IE
    Early Hum Dev; 1985 Sep; 11(3-4):275-80. PubMed ID: 3902449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supraglottic airway pressure-flow relationships during oronasal airflow partitioning in dogs.
    Amis TC; O'Neill N; Van der Touw T; Tully A; Brancatisano A
    J Appl Physiol (1985); 1996 Nov; 81(5):1958-64. PubMed ID: 8941516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of maturation on the extrathoracic airway stability of infants.
    Duara S; Silva Neto G; Claure N; Gerhardt T; Bancalari E
    J Appl Physiol (1985); 1992 Dec; 73(6):2368-72. PubMed ID: 1490945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.