These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21792403)

  • 1. Temperature dependence of crystal growth of hexagonal ice (I(h)).
    Rozmanov D; Kusalik PG
    Phys Chem Chem Phys; 2011 Sep; 13(34):15501-11. PubMed ID: 21792403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropy in the crystal growth of hexagonal ice, I(h).
    Rozmanov D; Kusalik PG
    J Chem Phys; 2012 Sep; 137(9):094702. PubMed ID: 22957581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal growth investigations of ice∕water interfaces from molecular dynamics simulations: Profile functions and average properties.
    Razul MS; Kusalik PG
    J Chem Phys; 2011 Jan; 134(1):014710. PubMed ID: 21219023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the phase diagram of water with density functional theory potentials: The melting temperature of ice I(h) with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals.
    Yoo S; Zeng XC; Xantheas SS
    J Chem Phys; 2009 Jun; 130(22):221102. PubMed ID: 19530755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melting the ice: on the relation between melting temperature and size for nanoscale ice crystals.
    Pan D; Liu LM; Slater B; Michaelides A; Wang E
    ACS Nano; 2011 Jun; 5(6):4562-9. PubMed ID: 21568289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials.
    Koyama Y; Tanaka H; Gao G; Zeng XC
    J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.
    Salzmann CG; Radaelli PG; Finney JL; Mayer E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6313-24. PubMed ID: 18936855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice I(h).
    Gladich I; Roeselová M
    Phys Chem Chem Phys; 2012 Aug; 14(32):11371-85. PubMed ID: 22801804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anomalously high melting temperature of bilayer ice.
    Kastelowitz N; Johnston JC; Molinero V
    J Chem Phys; 2010 Mar; 132(12):124511. PubMed ID: 20370137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting and crystallization of ice in partially filled nanopores.
    Solveyra EG; de la Llave E; Scherlis DA; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14196-204. PubMed ID: 21863824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The melting temperature of the most common models of water.
    Vega C; Sanz E; Abascal JL
    J Chem Phys; 2005 Mar; 122(11):114507. PubMed ID: 15836229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of salt on the melting of ice: A molecular dynamics simulation study.
    Kim JS; Yethiraj A
    J Chem Phys; 2008 Sep; 129(12):124504. PubMed ID: 19045033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The melting point of hexagonal ice (Ih) is strongly dependent on the quadrupole of the water models.
    Abascal JL; Vega C
    Phys Chem Chem Phys; 2007 Jun; 9(22):2775-8. PubMed ID: 17538723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of ice critical nucleus size.
    Pereyra RG; Szleifer I; Carignano MA
    J Chem Phys; 2011 Jul; 135(3):034508. PubMed ID: 21787014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.