These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21792446)

  • 21. Framework fluxionality of organometallic oxides: synthesis, crystal structure, EXAFS, and DFT studies on [[Ru(eta6-arene)]4Mo4O16] complexes.
    Laurencin D; Garcia Fidalgo E; Villanneau R; Villain F; Herson P; Pacifico J; Stoeckli-Evans H; Bénard M; Rohmer MM; Süss-Fink G; Proust A
    Chemistry; 2004 Jan; 10(1):208-17. PubMed ID: 14695565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligand field stabilization and activation energies revisited: molecular modeling of the thermodynamic and kinetic properties of divalent, first-row aqua complexes.
    Deeth RJ; Randell K
    Inorg Chem; 2008 Aug; 47(16):7377-88. PubMed ID: 18652450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and bonding analysis of dimethylgallyl complexes of iron, ruthenium, and osmium [(η5-C5H5)(CO)2M(GaMe2)] and [(η5-C5H5)(Me3P)2M(GaMe2)].
    Pandey KK
    J Phys Chem A; 2011 Aug; 115(30):8578-85. PubMed ID: 21726095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic structure of 2,2'-bipyridine organotransition-metal complexes. Establishing the ligand oxidation level by density functional theoretical calculations.
    Scarborough CC; Wieghardt K
    Inorg Chem; 2011 Oct; 50(20):9773-93. PubMed ID: 21678919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytotoxicity of half sandwich ruthenium(II) complexes with strong hydrogen bond acceptor ligands and their mechanism of action.
    Das S; Sinha S; Britto R; Somasundaram K; Samuelson AG
    J Inorg Biochem; 2010 Feb; 104(2):93-104. PubMed ID: 19913918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for ligand non-innocence in a formally ruthenium(I) hydride complex.
    Wieder NL; Gallagher M; Carroll PJ; Berry DH
    J Am Chem Soc; 2010 Mar; 132(12):4107-9. PubMed ID: 20199024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-activity relationships for cytotoxic ruthenium(II) arene complexes containing N,N-, N,O-, and O,O-chelating ligands.
    Habtemariam A; Melchart M; Fernandez R; Parsons S; Oswald ID; Parkin A; Fabbiani FP; Davidson JE; Dawson A; Aird RE; Jodrell DI; Sadler PJ
    J Med Chem; 2006 Nov; 49(23):6858-68. PubMed ID: 17154516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A DFT and ab initio benchmarking study of metal-alkane interactions and the activation of carbon-hydrogen bonds.
    Flener-Lovitt C; Woon DE; Dunning TH; Girolami GS
    J Phys Chem A; 2010 Feb; 114(4):1843-51. PubMed ID: 20043689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of chelating ligands to tune the reactive site of half-sandwich ruthenium(II)-arene anticancer complexes.
    Fernández R; Melchart M; Habtemariam A; Parsons S; Sadler PJ
    Chemistry; 2004 Oct; 10(20):5173-9. PubMed ID: 15372674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An average-of-configuration method for using Kohn-Sham density functional theory in modeling ligand-field theory.
    Anthon C; Bendix J; Schäffer CE
    Inorg Chem; 2003 Jun; 42(13):4088-97. PubMed ID: 12817966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calixarene-monophosphines as supramolecular chelators.
    Sameni S; Lejeune M; Jeunesse C; Matt D; Welter R
    Dalton Trans; 2009 Oct; (38):7912-23. PubMed ID: 19771354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative evaluation of d-pi interaction in copper(I) complexes and control of copper(I)-dioxygen reactivity.
    Osako T; Tachi Y; Doe M; Shiro M; Ohkubo K; Fukuzumi S; Itoh S
    Chemistry; 2004 Jan; 10(1):237-46. PubMed ID: 14695569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transition metal-carbon complexes. A theoretical study.
    Krapp A; Pandey KK; Frenking G
    J Am Chem Soc; 2007 Jun; 129(24):7596-610. PubMed ID: 17530845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling electron transfer through the manipulation of structure and ligand-based torsional motions: a computational exploration of ruthenium donor-acceptor systems using density functional theory.
    Meylemans HA; Damrauer NH
    Inorg Chem; 2009 Dec; 48(23):11161-75. PubMed ID: 19856899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DommiMOE: an implementation of ligand field molecular mechanics in the molecular operating environment.
    Deeth RJ; Fey N; Williams-Hubbard B
    J Comput Chem; 2005 Jan; 26(2):123-30. PubMed ID: 15584081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ruthenium based catalysts for olefin hydrosilylation: dichloro(p-cymene)ruthenium and related complexes.
    Tuttle T; Wang D; Thiel W; Köhler J; Hofmann M; Weis J
    Dalton Trans; 2009 Aug; (30):5894-901. PubMed ID: 19623390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nature of M-Ga bonds in dihalogallyl complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): a DFT study.
    Pandey KK; Patidar P; Aldridge S
    J Phys Chem A; 2010 Nov; 114(45):12099-105. PubMed ID: 20977253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.
    Brownridge S; Crawford MJ; Du H; Harcourt RD; Knapp C; Laitinen RS; Passmore J; Rautiainen JM; Suontamo RJ; Valkonen J
    Inorg Chem; 2007 Feb; 46(3):681-99. PubMed ID: 17257010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of electroactive thiacrown ruthenium(II) complexes into hydrogen-bonded chain and tape networks.
    Shan N; Hawxwell SM; Adams H; Brammer L; Thomas JA
    Inorg Chem; 2008 Dec; 47(24):11551-60. PubMed ID: 18998622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron-structure calculations and bond order analysis using density functional theory of cationic dinuclear arene ruthenium complexes.
    Fowe EP; Therrien B; Süss-Fink G; Daul C
    Inorg Chem; 2008 Jan; 47(1):42-8. PubMed ID: 18052334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.