These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21792671)

  • 1. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
    Aprasoff J; Donchin O
    J Comput Neurosci; 2012 Apr; 32(2):297-307. PubMed ID: 21792671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational nature of human adaptive control during learning of reaching movements in force fields.
    Bhushan N; Shadmehr R
    Biol Cybern; 1999 Jul; 81(1):39-60. PubMed ID: 10434390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Did We Get Sensorimotor Adaptation Wrong? Implicit Adaptation as Direct Policy Updating Rather than Forward-Model-Based Learning.
    Hadjiosif AM; Krakauer JW; Haith AM
    J Neurosci; 2021 Mar; 41(12):2747-2761. PubMed ID: 33558432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive control of saccades via internal feedback.
    Chen-Harris H; Joiner WM; Ethier V; Zee DS; Shadmehr R
    J Neurosci; 2008 Mar; 28(11):2804-13. PubMed ID: 18337410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-Free Robust Optimal Feedback Mechanisms of Biological Motor Control.
    Bian T; Wolpert DM; Jiang ZP
    Neural Comput; 2020 Mar; 32(3):562-595. PubMed ID: 31951794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
    Botzer L; Karniel A
    Eur J Neurosci; 2013 Jul; 38(1):2108-23. PubMed ID: 23701418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error correction, sensory prediction, and adaptation in motor control.
    Shadmehr R; Smith MA; Krakauer JW
    Annu Rev Neurosci; 2010; 33():89-108. PubMed ID: 20367317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are fast/slow process in motor adaptation and forward/inverse internal model two sides of the same coin?
    Yavari F; Towhidkhah F; Ahmadi-Pajouh MA
    Med Hypotheses; 2013 Oct; 81(4):592-600. PubMed ID: 23899631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar contributions to reach adaptation and learning sensory consequences of action.
    Izawa J; Criscimagna-Hemminger SE; Shadmehr R
    J Neurosci; 2012 Mar; 32(12):4230-9. PubMed ID: 22442085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward models and state estimation in compensatory eye movements.
    Frens MA; Donchin O
    Front Cell Neurosci; 2009; 3():13. PubMed ID: 19956563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalization in adaptation to stable and unstable dynamics.
    Kadiallah A; Franklin DW; Burdet E
    PLoS One; 2012; 7(10):e45075. PubMed ID: 23056191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparing to reach: selecting an adaptive long-latency feedback controller.
    Ahmadi-Pajouh MA; Towhidkhah F; Shadmehr R
    J Neurosci; 2012 Jul; 32(28):9537-45. PubMed ID: 22787039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational reproductions of external force field adaption without assuming desired trajectories.
    Kambara H; Takagi A; Shimizu H; Kawase T; Yoshimura N; Schweighofer N; Koike Y
    Neural Netw; 2021 Jul; 139():179-198. PubMed ID: 33740581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shared internal models for feedforward and feedback control.
    Wagner MJ; Smith MA
    J Neurosci; 2008 Oct; 28(42):10663-73. PubMed ID: 18923042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to delayed force perturbations in reaching movements.
    Levy N; Pressman A; Mussa-Ivaldi FA; Karniel A
    PLoS One; 2010 Aug; 5(8):e12128. PubMed ID: 20711461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical Motor Control Learned with Deep Deterministic Policy Gradient.
    Shi H; Sun Y; Li J
    Comput Intell Neurosci; 2018; 2018():8535429. PubMed ID: 29666634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive dynamic programming as a theory of sensorimotor control.
    Jiang Y; Jiang ZP
    Biol Cybern; 2014 Aug; 108(4):459-73. PubMed ID: 24962078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.