These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 21793002)
1. Many-body exchange-repulsion in polarizable molecular mechanics. I. Orbital-based approximations and applications to hydrated metal cation complexes. Chaudret R; Gresh N; Parisel O; Piquemal JP J Comput Chem; 2011 Nov; 32(14):2949-57. PubMed ID: 21793002 [TBL] [Abstract][Full Text] [Related]
2. Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations. Gresh N; Piquemal JP; Krauss M J Comput Chem; 2005 Aug; 26(11):1113-30. PubMed ID: 15934064 [TBL] [Abstract][Full Text] [Related]
3. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations. Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003 [TBL] [Abstract][Full Text] [Related]
4. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations. Dudev T; Devereux M; Meuwly M; Lim C; Piquemal JP; Gresh N J Comput Chem; 2015 Feb; 36(5):285-302. PubMed ID: 25545371 [TBL] [Abstract][Full Text] [Related]
5. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine. Remko M; Rode BM J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030 [TBL] [Abstract][Full Text] [Related]
6. Could an anisotropic molecular mechanics/dynamics potential account for sigma hole effects in the complexes of halogenated compounds? El Hage K; Piquemal JP; Hobaika Z; Maroun RG; Gresh N J Comput Chem; 2013 May; 34(13):1125-35. PubMed ID: 23386428 [TBL] [Abstract][Full Text] [Related]
7. Density functional theory study of calix[4]arene-N-azacrown-5, calix[4]arene-N-phenyl-azacrown-5, and their complexes with alkali-metal cations: Na+, K+, and Rb+. Zheng X; Wang X; Yi S; Wang N; Peng Y J Comput Chem; 2010 May; 31(7):1458-68. PubMed ID: 19882730 [TBL] [Abstract][Full Text] [Related]
8. Comparison of arsenic acid with phosphoric acid in the interaction with a water molecule and an alkali/alkaline-earth metal cation. Park SW; Kim CW; Lee JH; Shim G; Kim KS J Phys Chem A; 2011 Oct; 115(41):11355-61. PubMed ID: 21923105 [TBL] [Abstract][Full Text] [Related]
9. Discrete, solvent-free alkaline-earth metal cations: metal···fluorine interactions and ROP catalytic activity. Sarazin Y; Liu B; Roisnel T; Maron L; Carpentier JF J Am Chem Soc; 2011 Jun; 133(23):9069-87. PubMed ID: 21545119 [TBL] [Abstract][Full Text] [Related]
10. Electronic structure control of the nucleophilicity of transition metal-thiolate complexes: an experimental and theoretical study. Fox DC; Fiedler AT; Halfen HL; Brunold TC; Halfen JA J Am Chem Soc; 2004 Jun; 126(24):7627-38. PubMed ID: 15198611 [TBL] [Abstract][Full Text] [Related]
11. Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA-LF. Piquemal JP; Williams-Hubbard B; Fey N; Deeth RJ; Gresh N; Giessner-Prettre C J Comput Chem; 2003 Dec; 24(16):1963-70. PubMed ID: 14531050 [TBL] [Abstract][Full Text] [Related]
12. Structures of alkali metal ion-adenine complexes and hydrated complexes by IRMPD spectroscopy and electronic structure calculations. Rajabi K; Gillis EA; Fridgen TD J Phys Chem A; 2010 Mar; 114(10):3449-56. PubMed ID: 20163169 [TBL] [Abstract][Full Text] [Related]
13. Theoretical study of alkali cation-benzene complexes: potential energy surfaces and binding energies with improved results for rubidium and cesium. Coletti C; Re N J Phys Chem A; 2006 May; 110(20):6563-70. PubMed ID: 16706415 [TBL] [Abstract][Full Text] [Related]
14. Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions. Gresh N Curr Pharm Des; 2006; 12(17):2121-58. PubMed ID: 16796560 [TBL] [Abstract][Full Text] [Related]
15. Conformation-dependent intermolecular interaction energies of the triphosphate anion with divalent metal cations. Application to the ATP-binding site of a binuclear bacterial enzyme. A parallel quantum chemical and polarizable molecular mechanics investigation. Gresh N; Shi GB J Comput Chem; 2004 Jan; 25(2):160-8. PubMed ID: 14648615 [TBL] [Abstract][Full Text] [Related]
16. Molecular and electronic structure of square-planar nickel II, nickel III and nickel III pi-cation radical complexes with a tetradentate o-phenylenedioxamidate redox-active ligand. Carrasco R; Cano J; Ottenwaelder X; Aukauloo A; Journaux Y; Ruiz-García R Dalton Trans; 2005 Aug; (15):2527-38. PubMed ID: 16025172 [TBL] [Abstract][Full Text] [Related]
17. Induction effects in metal cation-benzene complexes. Soteras I; Orozco M; Luque FJ Phys Chem Chem Phys; 2008 May; 10(19):2616-24. PubMed ID: 18464976 [TBL] [Abstract][Full Text] [Related]
18. Cation-pi and amino-acceptor interactions between hydrated metal cations and DNA bases. A quantum-chemical view. Sponer J; Sponer JE; Leszczynski J J Biomol Struct Dyn; 2000 Jun; 17(6):1087-96. PubMed ID: 10949174 [TBL] [Abstract][Full Text] [Related]
19. Interaction Energies in Complexes of Zn and Amino Acids: A Comparison of Ab Initio and Force Field Based Calculations. Ahlstrand E; Hermansson K; Friedman R J Phys Chem A; 2017 Apr; 121(13):2643-2654. PubMed ID: 28272891 [TBL] [Abstract][Full Text] [Related]
20. Alkali and Alkaline-Earth Cations in Complexes with Small Bioorganic Ligands: Ab Initio Benchmark Calculations and Bond Energy Decomposition. López R; Díaz N; Suárez D Chemphyschem; 2020 Jan; 21(1):99-112. PubMed ID: 31674092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]