These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
768 related articles for article (PubMed ID: 21793008)
21. Refinement of NMR structures using implicit solvent and advanced sampling techniques. Chen J; Im W; Brooks CL J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737 [TBL] [Abstract][Full Text] [Related]
22. New computational method for prediction of interacting protein loop regions. Danielson ML; Lill MA Proteins; 2010 May; 78(7):1748-59. PubMed ID: 20186974 [TBL] [Abstract][Full Text] [Related]
23. Sampling of near-native protein conformations during protein structure refinement using a coarse-grained model, normal modes, and molecular dynamics simulations. Stumpff-Kane AW; Maksimiak K; Lee MS; Feig M Proteins; 2008 Mar; 70(4):1345-56. PubMed ID: 17876825 [TBL] [Abstract][Full Text] [Related]
24. Protein loop selection using orientation-dependent force fields derived by parameter optimization. Liang S; Zhang C; Standley DM Proteins; 2011 Jul; 79(7):2260-7. PubMed ID: 21574188 [TBL] [Abstract][Full Text] [Related]
25. High-resolution prediction of protein helix positions and orientations. Li X; Jacobson MP; Friesner RA Proteins; 2004 May; 55(2):368-82. PubMed ID: 15048828 [TBL] [Abstract][Full Text] [Related]
26. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Das R; Qian B; Raman S; Vernon R; Thompson J; Bradley P; Khare S; Tyka MD; Bhat D; Chivian D; Kim DE; Sheffler WH; Malmström L; Wollacott AM; Wang C; Andre I; Baker D Proteins; 2007; 69 Suppl 8():118-28. PubMed ID: 17894356 [TBL] [Abstract][Full Text] [Related]
27. Study of the Villin headpiece folding dynamics by combining coarse-grained Monte Carlo evolution and all-atom molecular dynamics. De Mori GM; Colombo G; Micheletti C Proteins; 2005 Feb; 58(2):459-71. PubMed ID: 15521059 [TBL] [Abstract][Full Text] [Related]
28. Coarse-grained protein model with residue orientation energies derived from atomic force fields. Betancourt MR J Phys Chem B; 2009 Nov; 113(44):14824-30. PubMed ID: 19817469 [TBL] [Abstract][Full Text] [Related]
29. Accurate Structure Prediction for Protein Loops Based on Molecular Dynamics Simulations with RSFF2C. Feng JJ; Chen JN; Kang W; Wu YD J Chem Theory Comput; 2021 Jul; 17(7):4614-4628. PubMed ID: 34170125 [TBL] [Abstract][Full Text] [Related]
30. Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the Surface Generalized Born solvent model. Felts AK; Gallicchio E; Wallqvist A; Levy RM Proteins; 2002 Aug; 48(2):404-22. PubMed ID: 12112706 [TBL] [Abstract][Full Text] [Related]
31. Application of statistical potentials to protein structure refinement from low resolution ab initio models. Lu H; Skolnick J Biopolymers; 2003 Dec; 70(4):575-84. PubMed ID: 14648767 [TBL] [Abstract][Full Text] [Related]
32. Assessment of Detection and Refinement Strategies for de novo Protein Structures Using Force Field and Statistical Potentials. Lee MS; Olson MA J Chem Theory Comput; 2007 Jan; 3(1):312-24. PubMed ID: 26627174 [TBL] [Abstract][Full Text] [Related]
33. Modeling side-chains using molecular dynamics improve recognition of binding region in CAPRI targets. Camacho CJ Proteins; 2005 Aug; 60(2):245-51. PubMed ID: 15981253 [TBL] [Abstract][Full Text] [Related]
34. Long loop prediction using the protein local optimization program. Zhu K; Pincus DL; Zhao S; Friesner RA Proteins; 2006 Nov; 65(2):438-52. PubMed ID: 16927380 [TBL] [Abstract][Full Text] [Related]
35. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin. Mehler EL; Hassan SA; Kortagere S; Weinstein H Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264 [TBL] [Abstract][Full Text] [Related]
36. Can molecular dynamics simulations provide high-resolution refinement of protein structure? Chen J; Brooks CL Proteins; 2007 Jun; 67(4):922-30. PubMed ID: 17373704 [TBL] [Abstract][Full Text] [Related]
37. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. Patel S; Mackerell AD; Brooks CL J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394 [TBL] [Abstract][Full Text] [Related]
38. A coarse-grained protein force field for folding and structure prediction. Maupetit J; Tuffery P; Derreumaux P Proteins; 2007 Nov; 69(2):394-408. PubMed ID: 17600832 [TBL] [Abstract][Full Text] [Related]
39. LEAP: highly accurate prediction of protein loop conformations by integrating coarse-grained sampling and optimized energy scores with all-atom refinement of backbone and side chains. Liang S; Zhang C; Zhou Y J Comput Chem; 2014 Feb; 35(4):335-41. PubMed ID: 24327406 [TBL] [Abstract][Full Text] [Related]
40. Conformational space exploration of Met- and Leu-enkephalin using the MOLS method, molecular dynamics, and Monte Carlo simulation--a comparative study. Ramya L; Gautham N Biopolymers; 2012 Mar; 97(3):165-76. PubMed ID: 21953081 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]