These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 21793495)

  • 1. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils.
    Chen S; Cai W; Piner RD; Suk JW; Wu Y; Ren Y; Kang J; Ruoff RS
    Nano Lett; 2011 Sep; 11(9):3519-25. PubMed ID: 21793495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates.
    Huang M; Ruoff RS
    Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil.
    Huang M; Biswal M; Park HJ; Jin S; Qu D; Hong S; Zhu Z; Qiu L; Luo D; Liu X; Yang Z; Liu Z; Huang Y; Lim H; Yoo WJ; Ding F; Wang Y; Lee Z; Ruoff RS
    ACS Nano; 2018 Jun; 12(6):6117-6127. PubMed ID: 29790339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil.
    Huang M; Bakharev PV; Wang ZJ; Biswal M; Yang Z; Jin S; Wang B; Park HJ; Li Y; Qu D; Kwon Y; Chen X; Lee SH; Willinger MG; Yoo WJ; Lee Z; Ruoff RS
    Nat Nanotechnol; 2020 Apr; 15(4):289-295. PubMed ID: 31959931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils.
    Wu Y; Chou H; Ji H; Wu Q; Chen S; Jiang W; Hao Y; Kang J; Ren Y; Piner RD; Ruoff RS
    ACS Nano; 2012 Sep; 6(9):7731-8. PubMed ID: 22946844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure.
    Xu J; Fu C; Sun H; Meng L; Xia Y; Zhang C; Yi X; Yang W; Guo P; Wang C; Liu J
    Nanotechnology; 2017 Apr; 28(15):155605. PubMed ID: 28303799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.
    Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS
    Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene films with large domain size by a two-step chemical vapor deposition process.
    Li X; Magnuson CW; Venugopal A; An J; Suk JW; Han B; Borysiak M; Cai W; Velamakanni A; Zhu Y; Fu L; Vogel EM; Voelkl E; Colombo L; Ruoff RS
    Nano Lett; 2010 Nov; 10(11):4328-34. PubMed ID: 20957985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Few-layer graphene direct deposition on Ni and Cu foil by cold-wall chemical vapor deposition.
    Chang QH; Guo GL; Wang T; Ji LC; Huang L; Ling B; Yang HF
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6516-20. PubMed ID: 22962776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial Cu-Ni Alloy Thin-Film Catalysts for Layer Number Control in Chemical Vapor-Deposited Graphene.
    Khanna SR; Stanford MG; Vlassiouk IV; Rack PD
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process.
    Liu M; Zhang Y; Chen Y; Gao Y; Gao T; Ma D; Ji Q; Zhang Y; Li C; Liu Z
    ACS Nano; 2012 Dec; 6(12):10581-9. PubMed ID: 23157621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Vapor Deposition of Bernal-Stacked Graphene on a Cu Surface by Breaking the Carbon Solubility Symmetry in Cu Foils.
    Yoo MS; Lee HC; Lee S; Lee SB; Lee NS; Cho K
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28635145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts.
    Shin HA; Ryu J; Cho SP; Lee EK; Cho S; Lee C; Joo YC; Hong BH
    Phys Chem Chem Phys; 2014 Feb; 16(7):3087-94. PubMed ID: 24399098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Quality Graphene Thin Films Synthesized by Glow Discharge Method in A Chemical Vapor Deposition System Using Solid Carbon Source.
    Wang L; Sun J; Guo W; Dong Y; Xie Y; Xiong F; Du Z; Li L; Deng J; Xu C
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32357507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed-Plasma Physical Vapor Deposition Approach Toward the Facile Synthesis of Multilayer and Monolayer Graphene for Anticoagulation Applications.
    Vijayaraghavan RK; Gaman C; Jose B; McCoy AP; Cafolla T; McNally PJ; Daniels S
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4878-86. PubMed ID: 26808203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-quality monolayer graphene synthesis on Pd foils via the suppression of multilayer growth at grain boundaries.
    Ma D; Liu M; Gao T; Li C; Sun J; Nie Y; Ji Q; Zhang Y; Song X; Zhang Y; Liu Z
    Small; 2014 Oct; 10(19):4003-11. PubMed ID: 24913919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for large area graphene transfer on the polymer optical fiber.
    Kulkarni A; Kim H; Amin R; Park SH; Hong BH; Kim T
    J Nanosci Nanotechnol; 2012 May; 12(5):3918-21. PubMed ID: 22852325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition.
    Procházka P; Mach J; Bischoff D; Lišková Z; Dvořák P; Vaňatka M; Simonet P; Varlet A; Hemzal D; Petrenec M; Kalina L; Bartošík M; Ensslin K; Varga P; Čechal J; Šikola T
    Nanotechnology; 2014 May; 25(18):185601. PubMed ID: 24739598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Growth of Graphene on Ni-Cu Alloy Thin Films at a Low Temperature and Its Carbon Diffusion Mechanism.
    Dong Y; Guo S; Mao H; Xu C; Xie Y; Cheng C; Mao X; Deng J; Pan G; Sun J
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31744237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.