These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 21793526)
1. Characterization and properties of novel gallium-doped calcium phosphate ceramics. Mellier C; Fayon F; Schnitzler V; Deniard P; Allix M; Quillard S; Massiot D; Bouler JM; Bujoli B; Janvier P Inorg Chem; 2011 Sep; 50(17):8252-60. PubMed ID: 21793526 [TBL] [Abstract][Full Text] [Related]
2. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics. Banerjee SS; Tarafder S; Davies NM; Bandyopadhyay A; Bose S Acta Biomater; 2010 Oct; 6(10):4167-74. PubMed ID: 20493283 [TBL] [Abstract][Full Text] [Related]
3. Furthering the understanding of silicate-substitution in α-tricalcium phosphate: an X-ray diffraction, X-ray fluorescence and solid-state nuclear magnetic resonance study. Duncan J; Hayakawa S; Osaka A; MacDonald JF; Hanna JV; Skakle JM; Gibson IR Acta Biomater; 2014 Mar; 10(3):1443-50. PubMed ID: 24287162 [TBL] [Abstract][Full Text] [Related]
4. Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics. Seeley Z; Bandyopadhyay A; Bose S J Biomed Mater Res A; 2007 Jul; 82(1):113-21. PubMed ID: 17269142 [TBL] [Abstract][Full Text] [Related]
5. Structural and spectroscopic characterization of a series of potassium- and/or sodium-substituted β-tricalcium phosphate. Quillard S; Paris M; Deniard P; Gildenhaar R; Berger G; Obadia L; Bouler JM Acta Biomater; 2011 Apr; 7(4):1844-52. PubMed ID: 21185410 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and structural characterization of strontium- and magnesium-co-substituted beta-tricalcium phosphate. Kannan S; Goetz-Neunhoeffer F; Neubauer J; Pina S; Torres PM; Ferreira JM Acta Biomater; 2010 Feb; 6(2):571-6. PubMed ID: 19679202 [TBL] [Abstract][Full Text] [Related]
7. Structural characterization and biological fluid interaction of Sol-Gel-derived Mg-substituted biphasic calcium phosphate ceramics. Gomes S; Renaudin G; Jallot E; Nedelec JM ACS Appl Mater Interfaces; 2009 Feb; 1(2):505-13. PubMed ID: 20353243 [TBL] [Abstract][Full Text] [Related]
8. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites. Zhang F; Chang J; Lu J; Lin K; Ning C Acta Biomater; 2007 Nov; 3(6):896-904. PubMed ID: 17625995 [TBL] [Abstract][Full Text] [Related]
9. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Gomes S; Renaudin G; Mesbah A; Jallot E; Bonhomme C; Babonneau F; Nedelec JM Acta Biomater; 2010 Aug; 6(8):3264-74. PubMed ID: 20188871 [TBL] [Abstract][Full Text] [Related]
10. Structural study and stability of hydroxyapatite and beta-tricalcium phosphate: two important bioceramics. Rangavittal N; Landa-Cánovas AR; González-Calbet JM; Vallet-Regí M J Biomed Mater Res; 2000 Sep; 51(4):660-8. PubMed ID: 10880114 [TBL] [Abstract][Full Text] [Related]
11. Influence of magnesium doping on the phase transformation temperature of beta-TCP ceramics examined by Rietveld refinement. Enderle R; Götz-Neunhoeffer F; Göbbels M; Müller FA; Greil P Biomaterials; 2005 Jun; 26(17):3379-84. PubMed ID: 15621226 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Xin R; Leng Y; Chen J; Zhang Q Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923 [TBL] [Abstract][Full Text] [Related]
13. Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics. García-Páez IH; Carrodeguas RG; De Aza AH; Baudín C; Pena P J Mech Behav Biomed Mater; 2014 Feb; 30():1-15. PubMed ID: 24216308 [TBL] [Abstract][Full Text] [Related]
14. An improvement in sintering property of beta-tricalcium phosphate by addition of calcium pyrophosphate. Ryu HS; Youn HJ; Hong KS; Chang BS; Lee CK; Chung SS Biomaterials; 2002 Feb; 23(3):909-14. PubMed ID: 11771710 [TBL] [Abstract][Full Text] [Related]
15. Structural characterization by x-ray methods of novel antimicrobial gallium-doped phosphate-based glasses. Pickup DM; Moss RM; Qiu D; Newport RJ; Valappil SP; Knowles JC; Smith ME J Chem Phys; 2009 Feb; 130(6):064708. PubMed ID: 19222291 [TBL] [Abstract][Full Text] [Related]
16. Preparation, characterization and mechanical performance of dense beta-TCP ceramics with/without magnesium substitution. Zhang X; Jiang F; Groth T; Vecchio KS J Mater Sci Mater Med; 2008 Sep; 19(9):3063-70. PubMed ID: 18392667 [TBL] [Abstract][Full Text] [Related]
17. Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite. Korbas M; Rokita E; Meyer-Klaucke W; Ryczek J J Biol Inorg Chem; 2004 Jan; 9(1):67-76. PubMed ID: 14648284 [TBL] [Abstract][Full Text] [Related]
18. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]