BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21793554)

  • 1. Biomass fractionation for the biorefinery: heteronuclear multiple quantum coherence-nuclear magnetic resonance investigation of lignin isolated from solvent fractionation of switchgrass.
    Bozell JJ; O'Lenick CJ; Warwick S
    J Agric Food Chem; 2011 Sep; 59(17):9232-42. PubMed ID: 21793554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment.
    Samuel R; Pu Y; Raman B; Ragauskas AJ
    Appl Biochem Biotechnol; 2010 Sep; 162(1):62-74. PubMed ID: 19701727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mild acetosolv process to fractionate bamboo for the biorefinery: structural and antioxidant properties of the dissolved lignin.
    Li MF; Sun SN; Xu F; Sun RC
    J Agric Food Chem; 2012 Feb; 60(7):1703-12. PubMed ID: 22283627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of organosolv lignin extracted from prairie cordgrass, switchgrass and corn stover.
    Cybulska I; Brudecki G; Rosentrater K; Julson JL; Lei H
    Bioresour Technol; 2012 Aug; 118():30-6. PubMed ID: 22695143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass characterization of morphological portions of alamo switchgrass.
    Hu Z; Foston MB; Ragauskas AJ
    J Agric Food Chem; 2011 Jul; 59(14):7765-72. PubMed ID: 21714578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation.
    Villaverde JJ; Li J; Ek M; Ligero P; de Vega A
    J Agric Food Chem; 2009 Jul; 57(14):6262-70. PubMed ID: 19552425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of clean fractionation process applied to switchgrass to produce pulp for enzymatic hydrolysis.
    Brudecki G; Cybulska I; Rosentrater K
    Bioresour Technol; 2013 Mar; 131():101-12. PubMed ID: 23340107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose solvent-based biomass pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switchgrass.
    Sathitsuksanoh N; Zhu Z; Wi S; Zhang YH
    Biotechnol Bioeng; 2011 Mar; 108(3):521-9. PubMed ID: 20967803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyzed modified clean fractionation of switchgrass.
    Cybulska I; Brudecki GP; Hankerson BR; Julson JL; Lei H
    Bioresour Technol; 2013 Jan; 127():92-9. PubMed ID: 23131627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition.
    Bauer S; Sorek H; Mitchell VD; Ibáñez AB; Wemmer DE
    J Agric Food Chem; 2012 Aug; 60(33):8203-12. PubMed ID: 22823333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organosolv extraction of lignin from hydrolyzed almond shells and application of the delta-value theory.
    Quesada-Medina J; López-Cremades FJ; Olivares-Carrillo P
    Bioresour Technol; 2010 Nov; 101(21):8252-60. PubMed ID: 20580226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment.
    Varanasi P; Singh P; Arora R; Adams PD; Auer M; Simmons BA; Singh S
    Bioresour Technol; 2012 Dec; 126():156-61. PubMed ID: 23073103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid.
    Xu W; Miller SJ; Agrawal PK; Jones CW
    ChemSusChem; 2012 Apr; 5(4):667-75. PubMed ID: 22438328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical structure and heterogeneity differences of two lignins from loblolly pine as investigated by advanced solid-state NMR spectroscopy.
    Holtman KM; Chen N; Chappell MA; Kadla JF; Xu L; Mao J
    J Agric Food Chem; 2010 Sep; 58(18):9882-92. PubMed ID: 20726583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia.
    Rollin JA; Zhu Z; Sathitsuksanoh N; Zhang YH
    Biotechnol Bioeng; 2011 Jan; 108(1):22-30. PubMed ID: 20812260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process.
    Wen JL; Sun SN; Yuan TQ; Xu F; Sun RC
    Bioresour Technol; 2013 Dec; 150():278-86. PubMed ID: 24184648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breakdown of cell wall nanostructure in dilute acid pretreated biomass.
    Pingali SV; Urban VS; Heller WT; McGaughey J; O'Neill H; Foston M; Myles DA; Ragauskas A; Evans BR
    Biomacromolecules; 2010 Sep; 11(9):2329-35. PubMed ID: 20726544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin.
    Heikkinen S; Toikka MM; Karhunen PT; Kilpeläinen IA
    J Am Chem Soc; 2003 Apr; 125(14):4362-7. PubMed ID: 12670260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion.
    Li J; Henriksson G; Gellerstedt G
    Bioresour Technol; 2007 Nov; 98(16):3061-8. PubMed ID: 17141499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: implications for characterizations of biomass combustion residues.
    Kuo LJ; Louchouarn P; Herbert BE
    Chemosphere; 2011 Oct; 85(5):797-805. PubMed ID: 21762951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.