BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21793803)

  • 1. In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast.
    Bermejo C; Ewald JC; Lanquar V; Jones AM; Frommer WB
    Biochem J; 2011 Aug; 438(1):1-10. PubMed ID: 21793803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimally invasive dynamic imaging of ions and metabolites in living cells.
    Fehr M; Ehrhardt DW; Lalonde S; Frommer WB
    Curr Opin Plant Biol; 2004 Jun; 7(3):345-51. PubMed ID: 15134757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format.
    Ewald JC; Heux S; Zamboni N
    Anal Chem; 2009 May; 81(9):3623-9. PubMed ID: 19320491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics.
    Canelas AB; ten Pierick A; Ras C; Seifar RM; van Dam JC; van Gulik WM; Heijnen JJ
    Anal Chem; 2009 Sep; 81(17):7379-89. PubMed ID: 19653633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
    Szeto SS; Reinke SN; Sykes BD; Lemire BD
    J Proteome Res; 2010 Dec; 9(12):6729-39. PubMed ID: 20964315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast model systems for examining nitrogen oxide biochemistry/signaling.
    Shinyashiki M; Lopez BE; Rodriguez CE; Fukuto JM
    Methods Enzymol; 2005; 396():301-16. PubMed ID: 16291240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling cellular biochemical reactions via metabolomics-driven approaches.
    Saito N; Ohashi Y; Soga T; Tomita M
    Curr Opin Microbiol; 2010 Jun; 13(3):358-62. PubMed ID: 20430690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae.
    Daum G; Lees ND; Bard M; Dickson R
    Yeast; 1998 Dec; 14(16):1471-510. PubMed ID: 9885152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolomic and lipidomic analyses of chronologically aging yeast.
    Richard VR; Bourque SD; Titorenko VI
    Methods Mol Biol; 2014; 1205():359-73. PubMed ID: 25213255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution of cAMP signals in three-dimensional microdomains using novel, real-time sensors.
    Karpen JW; Rich TC
    Proc West Pharmacol Soc; 2004; 47():1-5. PubMed ID: 15633600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and use of fluorescent nanosensors for metabolite imaging in living cells.
    Fehr M; Okumoto S; Deuschle K; Lager I; Looger LL; Persson J; Kozhukh L; Lalonde S; Frommer WB
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):287-90. PubMed ID: 15667328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic transcription factors as direct nutrient sensors.
    Sellick CA; Reece RJ
    Trends Biochem Sci; 2005 Jul; 30(7):405-12. PubMed ID: 15950477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics and phosphoproteomics for the mapping of cellular signalling networks.
    Preisinger C; von Kriegsheim A; Matallanas D; Kolch W
    Proteomics; 2008 Nov; 8(21):4402-15. PubMed ID: 18846508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of compartmentalization in metabolic flux models: yeast as an ecosystem of organelles.
    Klitgord N; Segrè D
    Genome Inform; 2010 Jan; 22():41-55. PubMed ID: 20238418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signalling towards cell wall synthesis in budding yeast.
    Raclavský V
    Acta Univ Palacki Olomuc Fac Med; 1998; 141():7-16. PubMed ID: 9684473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-second cellular dynamics: time-resolved electron microscopy and functional correlation.
    Plattner H; Hentschel J
    Int Rev Cytol; 2006; 255():133-76. PubMed ID: 17178466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics-based systematic prediction of yeast lifespan and its application for semi-rational screening of ageing-related mutants.
    Yoshida R; Tamura T; Takaoka C; Harada K; Kobayashi A; Mukai Y; Fukusaki E
    Aging Cell; 2010 Aug; 9(4):616-25. PubMed ID: 20550517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis.
    Bruck J; Liebermeister W; Klipp E
    Genome Inform; 2008; 20():1-14. PubMed ID: 19425118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations.
    Devantier R; Scheithauer B; Villas-Bôas SG; Pedersen S; Olsson L
    Biotechnol Bioeng; 2005 Jun; 90(6):703-14. PubMed ID: 15812801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A metabolomic and multivariate statistical process to assess the effects of genotoxins in Saccharomyces cerevisiae.
    Titman CM; Downs JA; Oliver SG; Carmichael PL; Scott AD; Griffin JL
    Mol Biosyst; 2009 Dec; 5(12):1913-24. PubMed ID: 20023725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.