These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 21794127)

  • 1. Expression cartography of human tissues using self organizing maps.
    Wirth H; Löffler M; von Bergen M; Binder H
    BMC Bioinformatics; 2011 Jul; 12():306. PubMed ID: 21794127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining SOM expression portraits: feature selection and integrating concepts of molecular function.
    Wirth H; von Bergen M; Binder H
    BioData Min; 2012 Oct; 5(1):18. PubMed ID: 23043905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-clustering and visualization of gene expression data and gene ontology terms for Saccharomyces cerevisiae using self-organizing maps.
    Brameier M; Wiuf C
    J Biomed Inform; 2007 Apr; 40(2):160-73. PubMed ID: 16824804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data.
    Hsu AL; Tang SL; Halgamuge SK
    Bioinformatics; 2003 Nov; 19(16):2131-40. PubMed ID: 14594719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of microRNA expression using machine learning.
    Wirth H; Cakir MV; Hopp L; Binder H
    Methods Mol Biol; 2014; 1107():257-78. PubMed ID: 24272443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and visualization of gene expression data using self-organizing maps.
    Nikkilä J; Törönen P; Kaski S; Venna J; Castrén E; Wong G
    Neural Netw; 2002; 15(8-9):953-66. PubMed ID: 12416686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering of gene expression data: performance and similarity analysis.
    Yin L; Huang CH; Ni J
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S19. PubMed ID: 17217511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of possible gene relationships through the application of self-organizing maps to DNA microarray databases.
    Chavez-Alvarez R; Chavoya A; Mendez-Vazquez A
    PLoS One; 2014; 9(4):e93233. PubMed ID: 24699245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced visualization of self-organizing maps with vector fields.
    Pölzlbauer G; Dittenbach M; Rauber A
    Neural Netw; 2006; 19(6-7):911-22. PubMed ID: 16782304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topology-based hierarchical clustering of self-organizing maps.
    Taşdemir K; Milenov P; Tapsall B
    IEEE Trans Neural Netw; 2011 Mar; 22(3):474-85. PubMed ID: 21356611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative RNA-Seq transcriptome analyses reveal dynamic time-dependent effects of
    Nia AM; Khanipov K; Barnette BL; Ullrich RL; Golovko G; Emmett MR
    BMC Genomics; 2020 Jul; 21(1):453. PubMed ID: 32611366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving cluster visualization in self-organizing maps: application in gene expression data analysis.
    Fernandez EA; Balzarini M
    Comput Biol Med; 2007 Dec; 37(12):1677-89. PubMed ID: 17544390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering and re-clustering for pattern discovery in gene expression data.
    Ma PC; Chan KC; Chiu DK
    J Bioinform Comput Biol; 2005 Apr; 3(2):281-301. PubMed ID: 15852506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data.
    Kong W; Mou X; Hu X
    BMC Bioinformatics; 2011; 12 Suppl 5(Suppl 5):S7. PubMed ID: 21989140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. oposSOM: R-package for high-dimensional portraying of genome-wide expression landscapes on bioconductor.
    Löffler-Wirth H; Kalcher M; Binder H
    Bioinformatics; 2015 Oct; 31(19):3225-7. PubMed ID: 26063839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SOM of SOMs.
    Furukawa T
    Neural Netw; 2009 May; 22(4):463-78. PubMed ID: 19243913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New adaptive color quantization method based on self-organizing maps.
    Chang CH; Xu P; Xiao R; Srikanthan T
    IEEE Trans Neural Netw; 2005 Jan; 16(1):237-49. PubMed ID: 15732403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of clustering algorithms for gene expression data.
    Datta S; Datta S
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S17. PubMed ID: 17217509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of metagene portraits reveals distinct transitions during kidney organogenesis.
    Tsigelny IF; Kouznetsova VL; Sweeney DE; Wu W; Bush KT; Nigam SK
    Sci Signal; 2008 Dec; 1(49):ra16. PubMed ID: 19066399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the performance of self-organizing maps via growing representations.
    Merkow M; DeLisle RK
    J Chem Inf Model; 2007; 47(5):1797-807. PubMed ID: 17705465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.