These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21794186)

  • 1. HighP-TNano-Mechanics of Polycrystalline Nickel.
    Zhao Y; Shen T; Zhang J
    Nanoscale Res Lett; 2007 Sep; 2(10):476-91. PubMed ID: 21794186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermomechanics of nanocrystalline nickel under high pressure-temperature conditions.
    Zhao Y; Zhang J; Clausen B; Shen TD; Gray GT; Wang L
    Nano Lett; 2007 Feb; 7(2):426-32. PubMed ID: 17298011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rediscovering the intrinsic mechanical properties of bulk nanocrystalline indium arsenide.
    Li S; Zhang J; Guan S; Guo R; He D
    Nanoscale; 2023 Apr; 15(16):7517-7525. PubMed ID: 37022013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the deformation behavior and mechanical characteristics of polycrystalline chromium-nickel alloys using molecular dynamics.
    Bui TX; Fang TH; Lee CI
    J Mol Model; 2022 Sep; 28(10):328. PubMed ID: 36138158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Below the Hall-Petch Limit in Nanocrystalline Ceramics.
    Ryou H; Drazin JW; Wahl KJ; Qadri SB; Gorzkowski EP; Feigelson BN; Wollmershauser JA
    ACS Nano; 2018 Apr; 12(4):3083-3094. PubMed ID: 29493218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating the mechanical properties of nanocrystalline nickel via molybdenum segregation: an atomistic study.
    Li Q; Zhang J; Tang H; Ye H; Zheng Y
    Nanotechnology; 2019 Jul; 30(27):275702. PubMed ID: 30836340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-pressure strengthening in ultrafine-grained metals.
    Zhou X; Feng Z; Zhu L; Xu J; Miyagi L; Dong H; Sheng H; Wang Y; Li Q; Ma Y; Zhang H; Yan J; Tamura N; Kunz M; Lutker K; Huang T; Hughes DA; Huang X; Chen B
    Nature; 2020 Mar; 579(7797):67-72. PubMed ID: 32094661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grain boundary segregation and interdiffusion effects in nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel.
    Pellicer E; Varea A; Sivaraman KM; Pané S; Suriñach S; Baró MD; Nogués J; Nelson BJ; Sort J
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2265-74. PubMed ID: 21667966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strength weakening by nanocrystals in ceramic materials.
    Wang Y; Zhang J; Zhao Y
    Nano Lett; 2007 Oct; 7(10):3196-9. PubMed ID: 17854230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grain Size Effects on Mechanical Properties of Nanocrystalline Cu
    Huang W; Pan K; Wang B; Gong Y
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoindentation characteristics of nanocrystalline B2 CuZr shape memory alloy via large-scale atomistic simulation.
    Zhang Y; Xu J; Hu Y; Li J; Ding S; Xia R
    J Mol Model; 2022 Sep; 28(10):317. PubMed ID: 36109370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals.
    Ke X; Ye J; Pan Z; Geng J; Besser MF; Qu D; Caro A; Marian J; Ott RT; Wang YM; Sansoz F
    Nat Mater; 2019 Nov; 18(11):1207-1214. PubMed ID: 31548629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.
    Reda Chellali M; Balogh Z; Schmitz G
    Ultramicroscopy; 2013 Sep; 132():164-70. PubMed ID: 23294555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study.
    Li Q; Zhang J; Tang H; Zhang H; Ye H; Zheng Y
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled crystal orientation-size effects on the strength of nano crystals.
    Yuan R; Beyerlein IJ; Zhou C
    Sci Rep; 2016 May; 6():26254. PubMed ID: 27185364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grain boundary stability governs hardening and softening in extremely fine nanograined metals.
    Hu J; Shi YN; Sauvage X; Sha G; Lu K
    Science; 2017 Mar; 355(6331):1292-1296. PubMed ID: 28336664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical strength enhancement by grain size reduction in a soft colloidal polycrystal.
    Mourchid A; Boucenna I; Carn F
    Soft Matter; 2021 Dec; 17(48):10910-10917. PubMed ID: 34811558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yield stress of duplex stainless steel specimens estimated using a compound Hall-Petch equation.
    Hirota N; Yin F; Azuma T; Inoue T
    Sci Technol Adv Mater; 2010 Apr; 11(2):025004. PubMed ID: 27877332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data compilation on the effect of grain size, temperature, and texture on the strength of a single-phase FCC MnFeNi medium-entropy alloy.
    Schneider M; Werner F; Langenkämper D; Reinhart C; Laplanche G
    Data Brief; 2020 Feb; 28():104807. PubMed ID: 31871972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.