BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2179472)

  • 21. Real-time observation of the disassembly of stable neuritic microtubules induced by laser transection: possible mechanisms of microtubule stabilization in neurites.
    Kurachi M; Kikumoto M; Tashiro H; Komiya Y; Tashiro T
    Cell Motil Cytoskeleton; 1999; 42(2):87-100. PubMed ID: 10215425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorylation of type III beta-tubulin PC12 cell neurites during NGF-induced process outgrowth.
    Aletta JM
    J Neurobiol; 1996 Dec; 31(4):461-75. PubMed ID: 8951104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regional differences in microtubule dynamics in the axon.
    Ahmad FJ; Pienkowski TP; Baas PW
    J Neurosci; 1993 Feb; 13(2):856-66. PubMed ID: 8426241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microtubule polarity reversal accompanies regrowth of amputated neurites.
    Baas PW; White LA; Heidemann SR
    Proc Natl Acad Sci U S A; 1987 Aug; 84(15):5272-6. PubMed ID: 3299383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly of microtubules at the tip of growing axons.
    Bamburg JR; Bray D; Chapman K
    Nature; 1986 Jun 19-25; 321(6072):788-90. PubMed ID: 2872595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active transport of photoactivated tubulin molecules in growing axons revealed by a new electron microscopic analysis.
    Funakoshi T; Takeda S; Hirokawa N
    J Cell Biol; 1996 Jun; 133(6):1347-53. PubMed ID: 8682869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of the class III beta-tubulin isotype in developing neurons in culture.
    Ferreira A; Caceres A
    J Neurosci Res; 1992 Aug; 32(4):516-29. PubMed ID: 1527798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic analysis of tubulin exchange at microtubule ends at low vinblastine concentrations.
    Jordan MA; Wilson L
    Biochemistry; 1990 Mar; 29(11):2730-9. PubMed ID: 2346745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules.
    Gundersen GG; Khawaja S; Bulinski JC
    J Cell Biol; 1987 Jul; 105(1):251-64. PubMed ID: 2886509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons.
    Brown A; Slaughter T; Black MM
    J Cell Biol; 1992 Nov; 119(4):867-82. PubMed ID: 1429841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tyrosinated and detyrosinated microtubules in axonal processes of cerebellar macroneurons grown in culture.
    Arregui C; Busciglio J; Caceres A; Barra HS
    J Neurosci Res; 1991 Feb; 28(2):171-81. PubMed ID: 1674546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative analysis of microtubule transport in growing nerve processes.
    Ma Y; Shakiryanova D; Vardya I; Popov SV
    Curr Biol; 2004 Apr; 14(8):725-30. PubMed ID: 15084289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collapsin response mediator protein-2 regulates neurite formation by modulating tubulin GTPase activity.
    Chae YC; Lee S; Heo K; Ha SH; Jung Y; Kim JH; Ihara Y; Suh PG; Ryu SH
    Cell Signal; 2009 Dec; 21(12):1818-26. PubMed ID: 19666111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial Tubulins A and B Exhibit Polarized Growth, Mixed-Polarity Bundling, and Destabilization by GTP Hydrolysis.
    Díaz-Celis C; Risca VI; Hurtado F; Polka JK; Hansen SD; Maturana D; Lagos R; Mullins RD; Monasterio O
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28716960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RGS2 promotes formation of neurites by stimulating microtubule polymerization.
    Heo K; Ha SH; Chae YC; Lee S; Oh YS; Kim YH; Kim SH; Kim JH; Mizoguchi A; Itoh TJ; Kwon HM; Ryu SH; Suh PG
    Cell Signal; 2006 Dec; 18(12):2182-92. PubMed ID: 16820281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Respective roles of neurofilaments, microtubules, MAP1B, and tau in neurite outgrowth and stabilization.
    Shea TB; Beermann ML
    Mol Biol Cell; 1994 Aug; 5(8):863-75. PubMed ID: 7803854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microtubule dynamics in axons and dendrites.
    Baas PW; Slaughter T; Brown A; Black MM
    J Neurosci Res; 1991 Sep; 30(1):134-53. PubMed ID: 1795398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of methyl mercury binding sites on tubulin subunits and microtubules.
    Vogel DG; Margolis RL; Mottet NK
    Pharmacol Toxicol; 1989 Feb; 64(2):196-201. PubMed ID: 2755920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation.
    Zheng J; Buxbaum RE; Heidemann SR
    J Cell Sci; 1993 Apr; 104 ( Pt 4)():1239-50. PubMed ID: 8314903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Actomyosin-dependent microtubule rearrangement in lysophosphatidic acid-induced neurite remodeling of young cortical neurons.
    Fukushima N; Morita Y
    Brain Res; 2006 Jun; 1094(1):65-75. PubMed ID: 16690038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.