These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Cerebellar glucose consumption in normal and pathologic states using fluorine-FDG and PET. Kushner M; Tobin M; Alavi A; Chawluk J; Rosen M; Fazekas F; Alavi J; Reivich M J Nucl Med; 1987 Nov; 28(11):1667-70. PubMed ID: 3499490 [TBL] [Abstract][Full Text] [Related]
10. Topography of brain glucose hypometabolism and epileptic network in glucose transporter 1 deficiency. Akman CI; Provenzano F; Wang D; Engelstad K; Hinton V; Yu J; Tikofsky R; Ichese M; De Vivo DC Epilepsy Res; 2015 Feb; 110():206-15. PubMed ID: 25616474 [TBL] [Abstract][Full Text] [Related]
11. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Shah T; Verdile G; Sohrabi H; Campbell A; Putland E; Cheetham C; Dhaliwal S; Weinborn M; Maruff P; Darby D; Martins RN Transl Psychiatry; 2014 Dec; 4(12):e487. PubMed ID: 25463973 [TBL] [Abstract][Full Text] [Related]
12. Phospholipid fatty acid pattern and D-glucose metabolism in muscles from omega3 fatty acid-depleted rats. Agascioglu E; Zhang Y; Sener A; Portois L; Chardigny JM; Malaisse WJ; Carpentier YA Biochimie; 2007 Mar; 89(3):374-82. PubMed ID: 17084500 [TBL] [Abstract][Full Text] [Related]
13. Changes in the heterogeneity of cerebral glucose metabolism with healthy aging: quantitative assessment by fractal analysis. Lee JS; Lee DS; Park KS; Chung JK; Lee MC J Neuroimaging; 2004 Oct; 14(4):350-6. PubMed ID: 15358956 [TBL] [Abstract][Full Text] [Related]
14. Elevated cerebellar glucose metabolism in microvascular white matter disease: normal aging and Alzheimer's disease. Klinger A; de Leon MJ; George AE; Miller JD; Wolf AP J Cereb Blood Flow Metab; 1988 Jun; 8(3):433-5. PubMed ID: 3259243 [TBL] [Abstract][Full Text] [Related]
15. Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. Kato T; Nakayama N; Yasokawa Y; Okumura A; Shinoda J; Iwama T J Neurotrauma; 2007 Jun; 24(6):919-26. PubMed ID: 17600509 [TBL] [Abstract][Full Text] [Related]
16. Amyloid burden and metabolic function in early-onset Alzheimer's disease: parietal lobe involvement. Ossenkoppele R; Zwan MD; Tolboom N; van Assema DM; Adriaanse SF; Kloet RW; Boellaard R; Windhorst AD; Barkhof F; Lammertsma AA; Scheltens P; van der Flier WM; van Berckel BN Brain; 2012 Jul; 135(Pt 7):2115-25. PubMed ID: 22556189 [TBL] [Abstract][Full Text] [Related]
17. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies. Alexander GE; Chen K; Pietrini P; Rapoport SI; Reiman EM Am J Psychiatry; 2002 May; 159(5):738-45. PubMed ID: 11986126 [TBL] [Abstract][Full Text] [Related]
18. The metabolic syndrome of fructose-fed rats: effects of long-chain polyunsaturated ω3 and ω6 fatty acids. II. Time course of changes in food intake, body weight, plasma glucose and insulin concentrations and insulin resistance. Mellouk Z; Hachimi Idrissi T; Louchami K; Hupkens E; Sener A; Yahia DA; Malaisse WJ Int J Mol Med; 2012 Jan; 29(1):113-8. PubMed ID: 21887459 [TBL] [Abstract][Full Text] [Related]
19. Pattern of glucose hypometabolism in frontotemporal dementia with motor neuron disease. Jeong Y; Park KC; Cho SS; Kim EJ; Kang SJ; Kim SE; Kang E; Na DL Neurology; 2005 Feb; 64(4):734-6. PubMed ID: 15728305 [TBL] [Abstract][Full Text] [Related]
20. Eicosapentaenoic acid decreases postprandial beta-hydroxybutyrate and free fatty acid responses in healthy young and elderly. Plourde M; Tremblay-Mercier J; Fortier M; Pifferi F; Cunnane SC Nutrition; 2009 Mar; 25(3):289-94. PubMed ID: 19036560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]